Gut Hormones and Neuropeptides as Mediators of Microbiome–Brain Communication

Author(s):  
Peter Holzer ◽  
Aitak Farzi

The gut microbiota interacts with the brain through multiple communication lines in which gut peptide hormones and neuropeptides play important messenger roles. These peptides are secondary chemical signals whose operation is controlled by the gut microbiota via a myriad of microbial metabolites, secondary bile acids, and structural components. We first outline a number of gut hormones (e.g., peptide YY, glucagon-like peptide, ghrelin, cholecystokinin) which communicate with the brain either via the circulation or via vagal afferent neurons. Several neuropeptides in the brain are likewise under the influence of gut microbes and mediate their impact on various aspects of brain function and behavior. These neuropeptides include neuropeptide Y, corticotropin-releasing factor, brain-derived neurotrophic factor, and several other peptides which act as neurotransmitters or trophic factors. Food intake, energy homeostasis, emotional-affective behavior, cognitive performance, stress resilience, and neurogenesis are among the processes which the gut microbiota regulates via the action of gut hormones and neuropeptides.

Author(s):  
Sarah H. Mhaibes ◽  
Najwan K. Fakree ◽  
Sonia I. Naser

In recent decades, global obesity has increased significantly, causing a major health problem with associated complications and major socioeconomic issues. The central nervous system (CNS), particularly the hypothalamus, regulates food intake through sensing the metabolic signals of peripheral organs and modulating feeding behaviors.  The hypothalamus interacts with other brain regions such as the brain stem to perform these vital functions. The gut plays a crucial role in controlling food consumption and energy homeostasis. The gut releases orexigenic and anorexigenic hormones that interact directly with the CNS or indirectly through vagal afferent neurons. Gastrointestinal peptides (GIP) including cholecystokinin, peptide YY, Nesfatin-1, glucagon-like peptide 1, and oxyntomodulin send satiety signals to the brain and ghrelin transmit hunger signals to the brain. The GIP is essential for the control of food consumption; thus, explain the link between the gastrointestinal tract (GIT) and the brain is important for managing obesity and its associated diseases. This review aimed to explain the role of gut peptides in satiety and hunger control.


2021 ◽  
pp. 1-12
Author(s):  
Fukiko Kitani-Morii ◽  
Robert P. Friedland ◽  
Hideki Yoshida ◽  
Toshiki Mizuno

Accumulating evidence show that the gut microbiota is deeply involved not only in host nutrient metabolism but also in immune function, endocrine regulation, and chronic disease. In neurodegenerative conditions such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis, the gut-brain axis, the bidirectional interaction between the brain and the gut, provides new route of pathological spread and potential therapeutic targets. Although studies of gut microbiota have been conducted mainly in mice, mammalian gut microbiota is highly diverse, complex, and sensitive to environmental changes. Drosophila melanogaster, a fruit fly, has many advantages as a laboratory animal: short life cycle, numerous and genetically homogenous offspring, less ethical concerns, availability of many genetic models, and low maintenance costs. Drosophila has a simpler gut microbiota than mammals and can be made to remain sterile or to have standardized gut microbiota by simple established methods. Research on the microbiota of Drosophila has revealed new molecules that regulate the brain-gut axis, and it has been shown that dysbiosis of the fly microbiota worsens lifespan, motor function, and neurodegeneration in AD and PD models. The results shown in fly studies represents a fundamental part of the immune and proteomic process involving gut-microbiota interactions that are highly conserved. Even though the fly’s gut microbiota are not simple mimics of humans, flies are a valuable system to learn the molecular mechanisms of how the gut microbiota affect host health and behavior.


2021 ◽  
Author(s):  
Julie Rodriguez ◽  
Nathalie M Delzenne

The gut microbiota is now widely recognized as an important factor contributing to the regulation of host metabolic functions. Numerous studies describe an imbalance in the gut microbial ecosystem in response to an energy-dense diet that drives the development of metabolic disorders. In this context, the manipulation of the gut microbiota by food components acting as prebiotics appears as a promising strategy. Several studies have already investigated the beneficial potency of prebiotics, mostly inulin type fructans, on host metabolism and key intestinal functions including gut hormone release. For the last 20 years, several non-digestible compounds present in food have been shown to modulate the gut microbiota and influence host metabolism in essential organs involved in the control of energy homeostasis. To date, numerous reviews summarize the impact of prebiotics on the liver or the brain. Here we propose to describe the mechanisms by which prebiotics, through modulation of the gut microbiota and endocrine functions, modulates the metabolic cross-talk communication between the gut, the adipose tissue and skeletal muscles.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jun-Ke Wang ◽  
Shu-Kun Yao

Functional constipation (FC), a condition characterized by heterogeneous symptoms (infrequent bowel movements, hard stools, excessive straining, or a sense of incomplete evacuation), is prevalent over the world. It is a multifactorial disorder and can be categorized into four subgroups according to different pathological mechanisms: normal transit constipation (NTC), slow transit constipation (STC), defecatory disorders (DD), and mixed type. Recently, growing evidence from human and animals has pointed that there was a strong association between gut microbiota and FC based on the brain-gut-microbiome axis. Studies have reported that the main characteristics of gut microbiota in FC patients were the relative decrease of beneficial bacteria such as Lactobacillus and Bifidobacterium, the relative increase of potential pathogens, and the reduced species richness. Gut microbiota can modulate gut functions through the metabolites of bacterial fermentation, among which short-chain fatty acids (SCFAs), secondary bile salts (BAs), and methane occupied more important positions and could trigger the release of gut hormones from enteroendocrine cells (EECs), such as 5-hydroxytryptamine (5-HT), peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). Subsequently, these gut hormones can influence gut sensation, secretion, and motility, primarily through activating specific receptors distributed on smooth muscle cells, enteric neurons, and epithelial cells. However, research findings were inconsistent and even conflicting, which may be partially due to various confounding factors. Future studies should take the associated confounders into consideration and adopt multiomics research strategies to obtain more complete conclusions and to provide reliable theoretical support for exploring new therapeutic targets.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Keisuke Suzuki ◽  
Channa N. Jayasena ◽  
Stephen R. Bloom

Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.


2021 ◽  
Vol 22 (6) ◽  
pp. 2993
Author(s):  
Jamie van Son ◽  
Laura L. Koekkoek ◽  
Susanne E. La Fleur ◽  
Mireille J. Serlie ◽  
Max Nieuwdorp

Interaction between the gut and the brain is essential for energy homeostasis. In obesity, this homeostasis is disrupted, leading to a positive energy balance and weight gain. Obesity is a global epidemic that affects individual health and strains the socioeconomic system. Microbial dysbiosis has long been reported in obesity and obesity-related disorders. More recent literature has focused on the interaction of the gut microbiota and its metabolites on human brain and behavior. Developing strategies that target the gut microbiota could be a future approach for the treatment of obesity. Here, we review the microbiota–gut–brain axis and possible therapeutic options.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1765 ◽  
Author(s):  
Vo Giau ◽  
Si Wu ◽  
Angelo Jamerlan ◽  
Seong An ◽  
SangYun Kim ◽  
...  

The bidirectional communication between the central nervous system (CNS) and the gut microbiota plays a pivotal role in human health. Increasing numbers of studies suggest that the gut microbiota can influence the brain and behavior of patients. Various metabolites secreted by the gut microbiota can affect the cognitive ability of patients diagnosed with neurodegenerative diseases. Nearly one in every ten Korean senior citizens suffers from Alzheimer’s disease (AD), the most common form of dementia. This review highlights the impact of metabolites from the gut microbiota on communication pathways between the brain and gut, as well as the neuroinflammatory roles they may have in AD patients. The objectives of this review are as follows: (1) to examine the role of the intestinal microbiota in homeostatic communication between the gut microbiota and the brain, termed the microbiota–gut–brain (MGB) axis; (2) to determine the underlying mechanisms of signal dysfunction; and (3) to assess the impact of signal dysfunction induced by the microbiota on AD. This review will aid in understanding the microbiota of elderly people and the neuroinflammatory roles they may have in AD.


2021 ◽  
Vol 22 (11) ◽  
pp. 5830
Author(s):  
Marina Romaní-Pérez ◽  
Clara Bullich-Vilarrubias ◽  
Inmaculada López-Almela ◽  
Rebeca Liébana-García ◽  
Marta Olivares ◽  
...  

Obesity currently represents a major societal and health challenge worldwide. Its prevalence has reached epidemic proportions and trends continue to rise, reflecting the need for more effective preventive measures. Hypothalamic circuits that control energy homeostasis in response to food intake are interesting targets for body-weight management, for example, through interventions that reinforce the gut-to-brain nutrient signalling, whose malfunction contributes to obesity. Gut microbiota–diet interactions might interfere in nutrient sensing and signalling from the gut to the brain, where the information is processed to control energy homeostasis. This gut microbiota–brain crosstalk is mediated by metabolites, mainly short chain fatty acids, secondary bile acids or amino acids-derived metabolites and subcellular bacterial components. These activate gut–endocrine and/or neural-mediated pathways or pass to systemic circulation and then reach the brain. Feeding time and dietary composition are the main drivers of the gut microbiota structure and function. Therefore, aberrant feeding patterns or unhealthy diets might alter gut microbiota–diet interactions and modify nutrient availability and/or microbial ligands transmitting information from the gut to the brain in response to food intake, thus impairing energy homeostasis. Herein, we update the scientific evidence supporting that gut microbiota is a source of novel dietary and non-dietary biological products that may beneficially regulate gut-to-brain communication and, thus, improve metabolic health. Additionally, we evaluate how the feeding time and dietary composition modulate the gut microbiota and, thereby, the intraluminal availability of these biological products with potential effects on energy homeostasis. The review also identifies knowledge gaps and the advances required to clinically apply microbiome-based strategies to improve the gut–brain axis function and, thus, combat obesity.


2019 ◽  
Vol 11 (518) ◽  
pp. eaau4760 ◽  
Author(s):  
Parag Kundu ◽  
Hae Ung Lee ◽  
Isabel Garcia-Perez ◽  
Emmy Xue Yun Tay ◽  
Hyejin Kim ◽  
...  

The gut microbiota evolves as the host ages, yet the effects of these microbial changes on host physiology and energy homeostasis are poorly understood. To investigate these potential effects, we transplanted the gut microbiota of old or young mice into young germ-free recipient mice. Both groups showed similar weight gain and skeletal muscle mass, but germ-free mice receiving a gut microbiota transplant from old donor mice unexpectedly showed increased neurogenesis in the hippocampus of the brain and increased intestinal growth. Metagenomic analysis revealed age-sensitive enrichment in butyrate-producing microbes in young germ-free mice transplanted with the gut microbiota of old donor mice. The higher concentration of gut microbiota–derived butyrate in these young transplanted mice was associated with an increase in the pleiotropic and prolongevity hormone fibroblast growth factor 21 (FGF21). An increase in FGF21 correlated with increased AMPK and SIRT-1 activation and reduced mTOR signaling. Young germ-free mice treated with exogenous sodium butyrate recapitulated the prolongevity phenotype observed in young germ-free mice receiving a gut microbiota transplant from old donor mice. These results suggest that gut microbiota transplants from aged hosts conferred beneficial effects in responsive young recipients.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3067
Author(s):  
Allison W. Rautmann ◽  
Claire B. de La Serre

The gut microbiota plays a key role in modulating host physiology and behavior, particularly feeding behavior and energy homeostasis. There is accumulating evidence demonstrating a role for gut microbiota in the etiology of obesity. In human and rodent studies, obesity and high-energy feeding are most consistently found to be associated with decreased bacterial diversity, changes in main phyla relative abundances and increased presence of pro-inflammatory products. Diet-associated alterations in microbiome composition are linked with weight gain, adiposity, and changes in ingestive behavior. There are multiple pathways through which the microbiome influences food intake. This review discusses these pathways, including peripheral mechanisms such as the regulation of gut satiety peptide release and alterations in leptin and cholecystokinin signaling along the vagus nerve, as well as central mechanisms, such as the modulation of hypothalamic neuroinflammation and alterations in reward signaling. Most research currently focuses on determining the role of the microbiome in the development of obesity and using microbiome manipulation to prevent diet-induced increase in food intake. More studies are necessary to determine whether microbiome manipulation after prolonged energy-dense diet exposure and obesity can reduce intake and promote meaningful weight loss.


Sign in / Sign up

Export Citation Format

Share Document