Combining brain imaging with brain stimulation: causality and connectivity

Author(s):  
Tomáš Paus

This article establishes the concept of a methodological approach to combine brain imaging with brain stimulation. Transcranial magnetic stimulation (TMS) is a tool that allows perturbing neural activity, in time and space, in a noninvasive manner. This approach allows the study of the brain-behaviour relationship. Under certain circumstances, the influence of one region on other, called the effective connectivity, can be measured. Functional connectivity is the extent of correlation in brain activity measured across a number of spatially distinct brain regions. This tool of connectivity can be applied to any dataset acquired with brain-mapping tools. However, its interpretation is complex. Also, the technical complexity of the combined studies needs to be resolved. Future studies may benefit from focusing on neurochemical transmission in specific neural circuits and on temporal dynamics of cortico-cortical interactions.

2021 ◽  
Author(s):  
Stephan Krohn ◽  
Nina von Schwanenflug ◽  
Leonhard Waschke ◽  
Amy Romanello ◽  
Martin Gell ◽  
...  

The human brain operates in large-scale functional networks, collectively subsumed as the functional connectome1-13. Recent work has begun to unravel the organization of the connectome, including the temporal dynamics of brain states14-20, the trade-off between segregation and integration9,15,21-23, and a functional hierarchy from lower-order unimodal to higher-order transmodal processing systems24-27. However, it remains unknown how these network properties are embedded in the brain and if they emerge from a common neural foundation. Here we apply time-resolved estimation of brain signal complexity to uncover a unifying principle of brain organization, linking the connectome to neural variability6,28-31. Using functional magnetic resonance imaging (fMRI), we show that neural activity is marked by spontaneous "complexity drops" that reflect episodes of increased pattern regularity in the brain, and that functional connections among brain regions are an expression of their simultaneous engagement in such episodes. Moreover, these complexity drops ubiquitously propagate along cortical hierarchies, suggesting that the brain intrinsically reiterates its own functional architecture. Globally, neural activity clusters into temporal complexity states that dynamically shape the coupling strength and configuration of the connectome, implementing a continuous re-negotiation between cost-efficient segregation and communication-enhancing integration9,15,21,23. Furthermore, complexity states resolve the recently discovered association between anatomical and functional network hierarchies comprehensively25-27,32. Finally, brain signal complexity is highly sensitive to age and reflects inter-individual differences in cognition and motor function. In sum, we identify a spatiotemporal complexity architecture of neural activity — a functional "complexome" that gives rise to the network organization of the human brain.


2021 ◽  
Author(s):  
Przemysław Adamczyk ◽  
Martin Jáni ◽  
Tomasz S. Ligeza ◽  
Olga Płonka ◽  
Piotr Błądziński ◽  
...  

AbstractFigurative language processing (e.g. metaphors) is commonly impaired in schizophrenia. In the present study, we investigated the neural activity and propagation of information within neural circuits related to the figurative speech, as a neural substrate of impaired conventional metaphor processing in schizophrenia. The study included 30 schizophrenia outpatients and 30 healthy controls, all of whom were assessed with a functional Magnetic Resonance Imaging (fMRI) and electroencephalography (EEG) punchline-based metaphor comprehension task including literal (neutral), figurative (metaphorical) and nonsense (absurd) endings. The blood oxygenation level-dependent signal was recorded with 3T MRI scanner and direction and strength of cortical information flow in the time course of task processing was estimated with a 64-channel EEG input for directed transfer function. The presented results revealed that the behavioral manifestation of impaired figurative language in schizophrenia is related to the hypofunction in the bilateral fronto-temporo-parietal brain regions (fMRI) and various differences in effective connectivity in the fronto-temporo-parietal circuit (EEG). Schizophrenia outpatients showed an abnormal pattern of connectivity during metaphor processing which was related to bilateral (but more pronounced at the left hemisphere) hypoactivation of the brain. Moreover, we found reversed lateralization patterns, i.e. a rightward-shifted pattern during metaphor processing in schizophrenia compared to the control group. In conclusion, the presented findings revealed that the impairment of the conventional metaphor processing in schizophrenia is related to the bilateral brain hypofunction, which supports the evidence on reversed lateralization of the language neural network and the existence of compensatory recruitment of alternative neural circuits in schizophrenia.


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


2018 ◽  
pp. 135-184
Author(s):  
Walter Glannon

This chapter discusses functional neurosurgery designed to modulate dysfunctional neural circuits mediating sensorimotor, cognitive, emotional, and volitional capacities. The chapter assesses the comparative benefits and risks of neural ablation and deep brain stimulation as the two most invasive forms of neuromodulation. It discusses the question of whether individuals with a severe or moderately severe psychiatric disorder have enough cognitive and emotional capacity to weigh reasons for and against ablation or deep brain stimulation and give informed consent to undergo it. The chapter also discusses the obligations of investigators conducting these trials to research subjects. In addition, it examines the medical and ethical justification for a sham control arm in psychiatric neurosurgery clinical trials. It considers the therapeutic potential of optogenetics as a novel form of neuromodulation. The fact that this technique manipulates both genetic material and neural circuits and has been tested only in animal models makes it unclear what its benefit–risk ratio would be. The chapter concludes with a brief discussion of the potential of neuromodulation to stimulate endogenous repair and growth mechanisms in the brain.


2020 ◽  
Vol 10 (12) ◽  
pp. 936
Author(s):  
Yujia Wu ◽  
Jingwen Ma ◽  
Lei Cai ◽  
Zengjian Wang ◽  
Miao Fan ◽  
...  

It is unclear whether the brain activity during phonological processing of second languages (L2) is similar to that of the first language (L1) in trilingual individuals, especially when the L1 is logographic, and the L2s are logographic and alphabetic, respectively. To explore this issue, this study examined brain activity during visual and auditory word rhyming tasks in Cantonese–Mandarin–English trilinguals. Thirty Chinese college students whose L1 was Cantonese and L2s were Mandarin and English were recruited. Functional magnetic resonance imaging (fMRI) was conducted while subjects performed visual and auditory word rhyming tasks in three languages (Cantonese, Mandarin, and English). The results revealed that in Cantonese–Mandarin–English trilinguals, whose L1 is logographic and the orthography of their L2 is the same as L1—i.e., Mandarin and Cantonese, which share the same set of Chinese characters—the brain regions for the phonological processing of L2 are different from those of L1; when the orthography of L2 is quite different from L1, i.e., English and Cantonese who belong to different writing systems, the brain regions for the phonological processing of L2 are similar to those of L1. A significant interaction effect was observed between language and modality in bilateral lingual gyri. Regions of interest (ROI) analysis at lingual gyri revealed greater activation of this region when using English than Cantonese and Mandarin in visual tasks.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1029-D1037
Author(s):  
Liting Song ◽  
Shaojun Pan ◽  
Zichao Zhang ◽  
Longhao Jia ◽  
Wei-Hua Chen ◽  
...  

Abstract The human brain is the most complex organ consisting of billions of neuronal and non-neuronal cells that are organized into distinct anatomical and functional regions. Elucidating the cellular and transcriptome architecture underlying the brain is crucial for understanding brain functions and brain disorders. Thanks to the single-cell RNA sequencing technologies, it is becoming possible to dissect the cellular compositions of the brain. Although great effort has been made to explore the transcriptome architecture of the human brain, a comprehensive database with dynamic cellular compositions and molecular characteristics of the human brain during the lifespan is still not available. Here, we present STAB (a Spatio-Temporal cell Atlas of the human Brain), a database consists of single-cell transcriptomes across multiple brain regions and developmental periods. Right now, STAB contains single-cell gene expression profiling of 42 cell subtypes across 20 brain regions and 11 developmental periods. With STAB, the landscape of cell types and their regional heterogeneity and temporal dynamics across the human brain can be clearly seen, which can help to understand both the development of the normal human brain and the etiology of neuropsychiatric disorders. STAB is available at http://stab.comp-sysbio.org.


Author(s):  
Ole Adrian Heggli ◽  
Ivana Konvalinka ◽  
Joana Cabral ◽  
Elvira Brattico ◽  
Morten L Kringelbach ◽  
...  

Abstract Interpersonal coordination is a core part of human interaction, and its underlying mechanisms have been extensively studied using social paradigms such as joint finger-tapping. Here, individual and dyadic differences have been found to yield a range of dyadic synchronization strategies, such as mutual adaptation, leading–leading, and leading–following behaviour, but the brain mechanisms that underlie these strategies remain poorly understood. To identify individual brain mechanisms underlying emergence of these minimal social interaction strategies, we contrasted EEG-recorded brain activity in two groups of musicians exhibiting the mutual adaptation and leading–leading strategies. We found that the individuals coordinating via mutual adaptation exhibited a more frequent occurrence of phase-locked activity within a transient action–perception-related brain network in the alpha range, as compared to the leading–leading group. Furthermore, we identified parietal and temporal brain regions that changed significantly in the directionality of their within-network information flow. Our results suggest that the stronger weight on extrinsic coupling observed in computational models of mutual adaptation as compared to leading–leading might be facilitated by a higher degree of action–perception network coupling in the brain.


2020 ◽  
Vol 65 (1) ◽  
pp. 23-32
Author(s):  
Mehdi Rajabioun ◽  
Ali Motie Nasrabadi ◽  
Mohammad Bagher Shamsollahi ◽  
Robert Coben

AbstractBrain connectivity estimation is a useful method to study brain functions and diagnose neuroscience disorders. Effective connectivity is a subdivision of brain connectivity which discusses the causal relationship between different parts of the brain. In this study, a dual Kalman-based method is used for effective connectivity estimation. Because of connectivity changes in autism, the method is applied to autistic signals for effective connectivity estimation. For method validation, the dual Kalman based method is compared with other connectivity estimation methods by estimation error and the dual Kalman-based method gives acceptable results with less estimation errors. Then, connectivities between active brain regions of autistic and normal children in the resting state are estimated and compared. In this simulation, the brain is divided into eight regions and the connectivity between regions and within them is calculated. It can be concluded from the results that in the resting state condition the effective connectivity of active regions is decreased between regions and is increased within each region in autistic children. In another result, by averaging the connectivity between the extracted active sources of each region, the connectivity between the left and right of the central part is more than that in other regions and the connectivity in the occipital part is less than that in others.


Sign in / Sign up

Export Citation Format

Share Document