Neuronal Correlates of Non-verbal Numerical Competence in Primates

Author(s):  
Andreas Nieder

Non-verbal numerical competence, such as the estimation of set size, is rooted in biological primitives that can also be explored in animals. Over the past years, the anatomical substrates and neuronal mechanisms of numerical cognition in primates have been unravelled down to the level of single neurons. Studies with behaviourally-trained monkeys have identified a parietofrontal network of individual neurons selectively tuned to the number of items (cardinal aspect) or the rank of items in a sequence (ordinal aspect). The properties of these neurons’ numerosity tuning curves can explain fundamental psychophysical phenomena, such as the numerical distance and size effect. Functionally overlapping groups of parietal neurons represent not only numerable-discrete quantity (numerosity), but also innumerable-continuous quantity (extent) and relations between quantities (proportions), supporting the idea of a generalized magnitude system in the brain. Moreover, many neurons in the prefrontal cortex establish semantic associations between signs and abstract numerical categories, a neuronal precursor mechanisms that may ultimately give rise to symbolic number processing in humans. These studies establish putative homologies between the monkey and human brain, and demonstrate the suitability of non-human primates as model system to explore the neurobiological roots of the brain’s non-verbal quantification system, which may constitute the phylogenetic and ontogenetic foundation of all further, more elaborate numerical skills in humans.

2017 ◽  
Author(s):  
Attila Krajcsi ◽  
Gabor Lengyel ◽  
Petia Kojouharova

Dominant numerical cognition models suppose that both symbolic and nonsymbolic numbers are processed by the Analogue Number System (ANS) working according to Weber’s law. It was proposed that in a number comparison task the numerical distance and size effects reflect a ratio-based performance which is the sign of the ANS activation. However, increasing number of findings and alternative models propose that symbolic and nonsymbolic numbers might be processed by different representations. Importantly, alternative explanations may offer similar predictions to the ANS prediction, therefore, former evidence usually utilizing only the goodness of fit of the ANS prediction is not sufficient to support the ANS account. To test the ANS model more rigorously, a more extensive test is offered here. Several properties of the ANS predictions for the error rates, reaction times and diffusion model drift rates were systematically analyzed in both nonsymbolic dot comparison and symbolic Indo-Arabic comparison tasks. It was consistently found that while the ANS model’s prediction is relatively good for the nonsymbolic dot comparison, its prediction is poorer and systematically biased for the symbolic Indo-Arabic comparison. We conclude that only nonsymbolic comparison is supported by the ANS, and symbolic number comparisons are processed by other representation.


Synthese ◽  
2021 ◽  
Author(s):  
César Frederico dos Santos

AbstractIn the literature on enculturation—the thesis according to which higher cognitive capacities result from transformations in the brain driven by culture—numerical cognition is often cited as an example. A consequence of the enculturation account for numerical cognition is that individuals cannot acquire numerical competence if a symbolic system for numbers is not available in their cultural environment. This poses a problem for the explanation of the historical origins of numerical concepts and symbols. When a numeral system had not been created yet, people did not have the opportunity to acquire number concepts. But, if people did not have number concepts, how could they ever create a symbolic system for numbers? Here I propose an account of the invention of symbolic systems for numbers by anumeric people in the remote past that is compatible with the enculturation thesis. I suggest that symbols for numbers and number concepts may have emerged at the same time through the re-semantification of words whose meanings were originally non-numerical.


2020 ◽  
Vol 20 (9) ◽  
pp. 800-811 ◽  
Author(s):  
Ferath Kherif ◽  
Sandrine Muller

In the past decades, neuroscientists and clinicians have collected a considerable amount of data and drastically increased our knowledge about the mapping of language in the brain. The emerging picture from the accumulated knowledge is that there are complex and combinatorial relationships between language functions and anatomical brain regions. Understanding the underlying principles of this complex mapping is of paramount importance for the identification of the brain signature of language and Neuro-Clinical signatures that explain language impairments and predict language recovery after stroke. We review recent attempts to addresses this question of language-brain mapping. We introduce the different concepts of mapping (from diffeomorphic one-to-one mapping to many-to-many mapping). We build those different forms of mapping to derive a theoretical framework where the current principles of brain architectures including redundancy, degeneracy, pluri-potentiality and bow-tie network are described.


Author(s):  
Sascha R. A. Alles ◽  
Anne-Marie Malfait ◽  
Richard J. Miller

Pain is not a simple phenomenon and, beyond its conscious perception, involves circuitry that allows the brain to provide an affective context for nociception, which can influence mood and memory. In the past decade, neurobiological techniques have been developed that allow investigators to elucidate the importance of particular groups of neurons in different aspects of the pain response, something that may have important translational implications for the development of novel therapies. Chemo- and optogenetics represent two of the most important technical advances of recent times for gaining understanding of physiological circuitry underlying complex behaviors. The use of these techniques for teasing out the role of neurons and glia in nociceptive pathways is a rapidly growing area of research. The major findings of studies focused on understanding circuitry involved in different aspects of nociception and pain are highlighted in this article. In addition, attention is drawn to the possibility of modification of chemo- and optogenetic techniques for use as potential therapies for treatment of chronic pain disorders in human patients.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 142
Author(s):  
Mariella Cuomo ◽  
Luca Borrelli ◽  
Rosa Della Monica ◽  
Lorena Coretti ◽  
Giulia De Riso ◽  
...  

The bidirectional microbiota–gut–brain axis has raised increasing interest over the past years in the context of health and disease, but there is a lack of information on molecular mechanisms underlying this connection. We hypothesized that change in microbiota composition may affect brain epigenetics leading to long-lasting effects on specific brain gene regulation. To test this hypothesis, we used Zebrafish (Danio Rerio) as a model system. As previously shown, treatment with high doses of probiotics can modulate behavior in Zebrafish, causing significant changes in the expression of some brain-relevant genes, such as BDNF and Tph1A. Using an ultra-deep targeted analysis, we investigated the methylation state of the BDNF and Tph1A promoter region in the brain and gut of probiotic-treated and untreated Zebrafishes. Thanks to the high resolution power of our analysis, we evaluated cell-to-cell methylation differences. At this resolution level, we found slight DNA methylation changes in probiotic-treated samples, likely related to a subgroup of brain and gut cells, and that specific DNA methylation signatures significantly correlated with specific behavioral scores.


2021 ◽  
Vol 10 (11) ◽  
pp. 2358
Author(s):  
Maria Grazia Giovannini ◽  
Daniele Lana ◽  
Chiara Traini ◽  
Maria Giuliana Vannucchi

The microbiota–gut system can be thought of as a single unit that interacts with the brain via the “two-way” microbiota–gut–brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.


1995 ◽  
Vol 7 (1) ◽  
pp. 1-6 ◽  
Author(s):  
D.R.A. Uges

SummaryToxicology is one of the eldest areas of special attention in medicine and pharmacy. In the past, forensic toxicology was the most important part, but nowadays, at least in the Netherlands, the clinical, occupational and environmental toxicology have the centre of attention.The brain plays its own role in the clinical toxicology. There the intoxication can take place, it can be the basis of the peripheral symptoms of the intoxication or it can be the cause of the intoxication, e.g. at a suicidal attempt or the hospital addiction syndrome.The somatic treatment of an intoxicated patient includes in the first place the stabilization of the patient (cardio-vascular, ventilation and central effects); then the removal of the poison from the surroundings and out of the patient by different suitable methods and finally the symptomatic treatment, sometimes with antidotes.In the Netherlands, hardly any intoxication is fatal, when the patient arrives in the hospital in time, or euthanasia took place on purpose.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yalan Xu ◽  
Xiuyue Song ◽  
Dong Wang ◽  
Yin Wang ◽  
Peifeng Li ◽  
...  

AbstractChemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychiatric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not least, we introduce the newly developed synaptomic methods. These methods and their successful applications marked the beginnings of the synaptomics era.


Open Biology ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 180074 ◽  
Author(s):  
Gabriela O. Bodea ◽  
Eleanor G. Z. McKelvey ◽  
Geoffrey J. Faulkner

Over the past decade, major discoveries in retrotransposon biology have depicted the neural genome as a dynamic structure during life. In particular, the retrotransposon LINE-1 (L1) has been shown to be transcribed and mobilized in the brain. Retrotransposition in the developing brain, as well as during adult neurogenesis, provides a milieu in which neural diversity can arise. Dysregulation of retrotransposon activity may also contribute to neurological disease. Here, we review recent reports of retrotransposon activity in the brain, and discuss the temporal nature of retrotransposition and its regulation in neural cells in response to stimuli. We also put forward hypotheses regarding the significance of retrotransposons for brain development and neurological function, and consider the potential implications of this phenomenon for neuropsychiatric and neurodegenerative conditions.


Sign in / Sign up

Export Citation Format

Share Document