scholarly journals Woodland strawberry axillary bud fate is dictated by a crosstalk of environmental and endogenous factors

2021 ◽  
Author(s):  
Javier Andrés Jimenez ◽  
Julie Caruana ◽  
Jiahui Liang ◽  
Samia Samad ◽  
Amparo Monfort ◽  
...  

Abstract Plant architecture is defined by fates and positions of meristematic tissues and has direct consequences on yield potential and environmental adaptation of the plant. In strawberries (Fragaria vesca L. and F. × ananassa Duch.), shoot apical meristems can remain vegetative or differentiate into a terminal inflorescence meristem. Strawberry axillary buds (AXBs) are located in leaf axils and can either remain dormant or follow one of the two possible developmental fates. AXBs can either develop into stolons needed for clonal reproduction or into branch crowns (BCs) that can bear their own terminal inflorescences under favorable conditions. Although AXB fate has direct consequences on yield potential and vegetative propagation of strawberries, the regulation of AXB fate has so far remained obscure. We subjected a number of woodland strawberry (F. vesca L.) natural accessions and transgenic genotypes to different environmental conditions and growth regulator treatments to demonstrate that strawberry AXB fate is regulated either by environmental or endogenous factors, depending on the AXB position on the plant. We confirm that the F. vesca GIBBERELLIN20-oxidase4 (FvGA20ox4) gene is indispensable for stolon development and under tight environmental regulation. Moreover, our data show that apical dominance inhibits the outgrowth of the youngest AXB as BCs, although the effect of apical dominance can be overrun by the activity of FvGA20ox4. Finally, we demonstrate that the FvGA20ox4 is photoperiodically regulated via FvSOC1 (F. vesca SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1) at 18°C, but at higher temperature of 22°C an unidentified FvSOC1-independent pathway promotes stolon development.

2021 ◽  
Vol 118 (11) ◽  
pp. e2004384118
Author(s):  
Xiaojian Xia ◽  
Han Dong ◽  
Yanling Yin ◽  
Xuewei Song ◽  
Xiaohua Gu ◽  
...  

The control of apical dominance involves auxin, strigolactones (SLs), cytokinins (CKs), and sugars, but the mechanistic controls of this regulatory network are not fully understood. Here, we show that brassinosteroid (BR) promotes bud outgrowth in tomato through the direct transcriptional regulation of BRANCHED1 (BRC1) by the BR signaling component BRASSINAZOLE-RESISTANT1 (BZR1). Attenuated responses to the removal of the apical bud, the inhibition of auxin, SLs or gibberellin synthesis, or treatment with CK and sucrose, were observed in bud outgrowth and the levels of BRC1 transcripts in the BR-deficient or bzr1 mutants. Furthermore, the accumulation of BR and the dephosphorylated form of BZR1 were increased by apical bud removal, inhibition of auxin, and SLs synthesis or treatment with CK and sucrose. These responses were decreased in the DELLA-deficient mutant. In addition, CK accumulation was inhibited by auxin and SLs, and decreased in the DELLA-deficient mutant, but it was increased in response to sucrose treatment. CK promoted BR synthesis in axillary buds through the action of the type-B response regulator, RR10. Our results demonstrate that BR signaling integrates multiple pathways that control shoot branching. Local BR signaling in axillary buds is therefore a potential target for shaping plant architecture.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kaiye Yu ◽  
Jinshe Wang ◽  
Chongyuan Sun ◽  
Xiaoqian Liu ◽  
Huanqing Xu ◽  
...  

Abstract Background Leaf size and shape, which affect light capture, and chlorophyll content are important factors affecting photosynthetic efficiency. Genetic variation of these components significantly affects yield potential and seed quality. Identification of the genetic basis for these traits and the relationship between them is of great practical significance for achieving ideal plant architecture and high photosynthetic efficiency for improved yield. Results Here, we undertook a large-scale linkage mapping study using three mapping populations to determine the genetic interplay between soybean leaf-related traits and chlorophyll content across two environments. Correlation analysis revealed a significant negative correlation between leaf size and shape, while both traits were positively correlated with chlorophyll content. This phenotypic relationship was verified across the three mapping populations as determined by principal component analysis, suggesting that these traits are under the control of complex and interrelated genetic components. The QTLs for leaf-related traits and chlorophyll are partly shared, which further supports the close genetic relationship between the two traits. The largest-effect major loci, q20, was stably identified across all population and environments and harbored the narrow leaflet gene Gm-JAG1 (Ln/ln), which is a key regulator of leaflet shape in soybean. Conclusion Our results uncover several major QTLs (q4–1, q4–2, q11, q13, q18 and q20) and its candidate genes specific or common to leaf-related traits and chlorophyll, and also show a complex epistatic interaction between the two traits. The SNP markers closely linked to these valuable QTLs could be used for molecular design breeding with improved plant architecture, photosynthetic capacity and even yield.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Hui Liu ◽  
Wei Qu ◽  
Kaikai Zhu ◽  
Zong-Ming Cheng

Abstract Background Protein kinases (PKs) play an important role in signaling cascades and are one of the largest and most conserved protein super families in plants. Despite their importance, the woodland strawberry (Fragaria vesca) kinome and expression patterns of PK genes remain to be characterized. Results Here, we report on the identification and classification of 954 Fragaria vesca PK genes, which were classified into nine groups and 124 gene families. These genes were distributed unevenly among the seven chromosomes, and the number of introns per gene varied from 0 to 47. Almost half of the putative PKs were predicted to localize to the nucleus and 24.6% were predicted to localize to the cell membrane. The expansion of the woodland strawberry PK gene family occurred via different duplication mechanisms and tandem duplicates occurred relatively late as compared to other duplication types. Moreover, we found that tandem and transposed duplicated PK gene pairs had undergone stronger diversifying selection and evolved relatively faster than WGD genes. The GO enrichment and transcriptome analysis implicates the involvement of strawberry PK genes in multiple biological processes and molecular functions in differential tissues, especially in pollens. Finally, 109 PKs, mostly the receptor-like kinases (RLKs), were found transcriptionally responsive to Botrytis cinerea infection. Conclusions The findings of this research expand the understanding of the evolutionary dynamics of PK genes in plant species and provide a potential link between cell signaling pathways and pathogen attack.


2020 ◽  
Vol 21 (20) ◽  
pp. 7593
Author(s):  
Fabrice Ntakirutimana ◽  
Wengang Xie

Awns, which are either bristles or hair-like outgrowths of lemmas in the florets, are one of the typical morphological characteristics of grass species. These stiff structures contribute to grain dispersal and burial and fend off animal predators. However, their phenotypic and genetic associations with traits deciding potential yield and quality are not fully understood. Awns appear to improve photosynthesis, provide assimilates for grain filling, thus contributing to the final grain yield, especially under temperature- and water-stress conditions. Long awns, however, represent a competing sink with developing kernels for photosynthates, which can reduce grain yield under favorable conditions. In addition, long awns can hamper postharvest handling, storage, and processing activities. Overall, little is known about the elusive role of awns, thus, this review summarizes what is known about the effect of awns on grain yield and biomass yield, grain nutritional value, and forage-quality attributes. The influence of awns on the agronomic performance of grasses seems to be associated with environmental and genetic factors and varies in different stages of plant development. The contribution of awns to yield traits and quality features previously documented in major cereal crops, such as rice, barley, and wheat, emphasizes that awns can be targeted for yield and quality improvement and may advance research aimed at identifying the phenotypic effects of morphological traits in grasses.


BMC Genomics ◽  
2015 ◽  
Vol 16 (1) ◽  
pp. 29 ◽  
Author(s):  
Omar Darwish ◽  
Rachel Shahan ◽  
Zhongchi Liu ◽  
Janet P Slovin ◽  
Nadim W Alkharouf

Sign in / Sign up

Export Citation Format

Share Document