scholarly journals Collagen molecular phenotypic switch between non-neoplastic and neoplastic canine mammary tissues

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masahiko Terajima ◽  
Yuki Taga ◽  
Becky K. Brisson ◽  
Amy C. Durham ◽  
Kotaro Sato ◽  
...  

AbstractIn spite of major advances over the past several decades in diagnosis and treatment, breast cancer remains a global cause of morbidity and premature death for both human and veterinary patients. Due to multiple shared clinicopathological features, dogs provide an excellent model of human breast cancer, thus, a comparative oncology approach may advance our understanding of breast cancer biology and improve patient outcomes. Despite an increasing awareness of the critical role of fibrillar collagens in breast cancer biology, tumor-permissive collagen features are still ill-defined. Here, we characterize the molecular and morphological phenotypes of type I collagen in canine mammary gland tumors. Canine mammary carcinoma samples contained longer collagen fibers as well as a greater population of wider fibers compared to non-neoplastic and adenoma samples. Furthermore, the total number of collagen cross-links enriched in the stable hydroxylysine-aldehyde derived cross-links was significantly increased in neoplastic mammary gland samples compared to non-neoplastic mammary gland tissue. The mass spectrometric analyses of type I collagen revealed that in malignant mammary tumor samples, lysine residues, in particular those in the telopeptides, were markedly over-hydroxylated in comparison to non-neoplastic mammary tissue. The extent of glycosylation of hydroxylysine residues was comparable among the groups. Consistent with these data, expression levels of genes encoding lysyl hydroxylase 2 (LH2) and its molecular chaperone FK506-binding protein 65 were both significantly increased in neoplastic samples. These alterations likely lead to an increase in the LH2-mediated stable collagen cross-links in mammary carcinoma that may promote tumor cell metastasis in these patients.

Author(s):  
Swathi R. Shetty ◽  
Ragini Yeeravalli ◽  
Tanya Bera ◽  
Amitava Das

: Epidermal growth factor receptor (EGFR), a type-I transmembrane protein with intrinsic tyrosine kinase activity is activated by peptide growth factors such as EGF, epigen, amphiregulin, etc. EGFR plays a vital role in regulating cell growth, migration, and differentiation in various tissue-specific cancers. It has been reported to be overexpressed in lung, head, and neck, colon, brain, pancreatic, and breast cancer that trigger tumor progression and drug resistance. EGFR overexpression alters the signaling pathway and induces cell division, invasion, and cell survival. Our prior studies demonstrated that EGFR inhibition modulates chemosensitivity in breast cancer stem cells thereby serving as a potential drug target for breast cancer mitigation. Tyrosine kinase inhibitors (Lapatinib, Neratinib) and monoclonal antibodies (Trastuzumab) targeting EGFR have been developed and approved by the US FDA for clinical use against breast cancer. This review highlights the critical role of EGFR in breast cancer progression and enumerates the various approaches being undertaken to inhibit aggressive breast cancers by suppressing the downstream pathways. Further, the mechanisms of action of potential molecules at various stages of drug development as well as clinically approved drugs for breast cancer treatment are illustrated.


Author(s):  
Georgia Colleluori ◽  
Jessica Perugini ◽  
Giorgio Barbatelli ◽  
Saverio Cinti

AbstractThe mammary gland (MG) is an exocrine gland present in female mammals responsible for the production and secretion of milk during the process of lactation. It is mainly composed by epithelial cells and adipocytes. Among the features that make the MG unique there are 1) its highly plastic properties displayed during pregnancy, lactation and involution (all steps belonging to the lactation cycle) and 2) its requirement to grow in close association with adipocytes which are absolutely necessary to ensure MG’s proper development at puberty and remodeling during the lactation cycle. Although MG adipocytes play such a critical role for the gland development, most of the studies have focused on its epithelial component only, leaving the role of the neighboring adipocytes largely unexplored. In this review we aim to describe evidences regarding MG’s adipocytes role and properties in physiologic conditions (gland development and lactation cycle), obesity and breast cancer, emphasizing the existing gaps in the literature which deserve further investigation.


2009 ◽  
Vol 185 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Farideh Sabeh ◽  
Ryoko Shimizu-Hirota ◽  
Stephen J. Weiss

Tissue invasion during metastasis requires cancer cells to negotiate a stromal environment dominated by cross-linked networks of type I collagen. Although cancer cells are known to use proteinases to sever collagen networks and thus ease their passage through these barriers, migration across extracellular matrices has also been reported to occur by protease-independent mechanisms, whereby cells squeeze through collagen-lined pores by adopting an ameboid phenotype. We investigate these alternate models of motility here and demonstrate that cancer cells have an absolute requirement for the membrane-anchored metalloproteinase MT1-MMP for invasion, and that protease-independent mechanisms of cell migration are only plausible when the collagen network is devoid of the covalent cross-links that characterize normal tissues.


2014 ◽  
Vol 8 (4) ◽  
pp. 212-216 ◽  
Author(s):  
Kyohei Fukuda ◽  
Yo Kamoshida ◽  
Taisuke Kurokawa ◽  
Mioto Yoshida ◽  
Yoko Fujita-Yamaguchi ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2256
Author(s):  
Konstantina Kyriakopoulou ◽  
Eirini Riti ◽  
Zoi Piperigkou ◽  
Konstantina Koutroumanou Sarri ◽  
Heba Bassiony ◽  
...  

Breast cancer accounts for almost one in four cancer diagnoses in women. Studies in breast cancer patients have identified several molecular markers, indicators of aggressiveness, which help toward more individual therapeutic approaches. In triple-negative breast cancer (TNBC), epidermal growth factor receptor (EGFR) overexpression is associated with increased metastatic potential and worst survival rates. Specifically, abnormal EGFR activation leads to altered matrix metalloproteinases’ (MMPs) expression and, hence, extracellular matrix (ECM) degradation, resulting in induced migration and invasion. The use of matrix substrates for cell culture gives the opportunity to mimic the natural growth conditions of the cells and their microenvironment, as well as cell–cell and cell–matrix interactions. The aim of this study was to evaluate the impact of EGFR inhibition, estrogen receptor beta (ERβ) and different matrix substrates [type I collagen and fibronectin (FN)] on the functional properties, expression of MMPs and cell morphology of ERβ-positive TNBC cells and shERβ ones. Our results highlight EGFR as a crucial regulator of the expression and activity levels of MMPs, while ERβ emerges as a mediator of MMP7 and MT1-MMP expression. In addition, the EGFR/ERβ axis impacts the adhesion and invasion potential of breast cancer cells on collagen type I. Images obtained by scanning electron microscope (SEM) from cultures on the different matrix substrates revealed novel observations regarding various structures of breast cancer cells (filopodia, extravesicles, tunneling nanotubes, etc.). Moreover, the significant contribution of EGFR and ERβ in the morphological characteristics of these cells is also demonstrated, hence highlighting the possibility of dual pharmacological targeting.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Masanori Oshi ◽  
Yoshihisa Tokumaru ◽  
Mariko Asaoka ◽  
Li Yan ◽  
Vikas Satyananda ◽  
...  

Abstract Tumor associated macrophages (TAMs) play a critical role in biology of various cancers, including breast cancer. In the current study, we defined “M1” macrophage and “M1”/“M2” ratio by transcriptomic signatures using xCell. We investigated the association between high level of “M1” macrophage or “M1”/“M2” ratio and the tumor immune microenvironment by analyzing the transcriptome of publicly available cohorts, TCGA and METABRIC. We found that “M1” high tumors were not associated with prolonged survival compared with “M1” low tumors, or with the response to neoadjuvant chemotherapy. “M1” high tumors were associated with clinically aggressive features and “M1” high tumors enriched the cell proliferation and cell cycle related gene sets in GSEA. At the same time, “M1” high tumors were associated with high immune activity and favorable tumor immune microenvironment, as well as high expression of immune check point molecules. Strikingly, all these results were mirrored in “M1”/“M2” ratio high tumors. In conclusion, transcriptomically defined “M1” or “M1”/“M2” high tumors were associated with aggressive cancer biology and favorable tumor immune microenvironment but not with survival benefit, which resembled only part of their conventional clinical characteristics.


2019 ◽  
Author(s):  
Xiaojing Nie ◽  
Xirao Sun ◽  
Chengyue Wang ◽  
Jingxin Yang

Abstract Type I collagen (Col I) is a main component of extracellular matrix (ECM). Its safety, biocompatibility, hydrophilicity and pyrogen immunogenicity make it suitable for tissues engineering applications. Mg2+ also control a myriad of cellular processes, including the bone development by enhancing the attachment and differentiation of osteoblasts and accelerating mineralization to enhance bone healing. In our studies, Mg2+ bind collagen to promote the proliferation and differentiation of osteoblasts through the expression of integrins and downstream signaling pathways. In order to clarify the biological behavior effect of 10 mM Mg2+/Col I coating, we performed 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase (ALP), 4′6-diamidino-2-phenylindole (DAPI), Alizarin red staining and Rhodamine B-isothiocyanate (RITC)-labeled phalloidin experiments and found that 10 mM Mg2+ group, Col I-coating group, 10 mM Mg2+/Col I-coating group, respectively, promoted the proliferation and differentiation of osteoblasts, especially 10 mM Mg2+/Col I-coating group. We detected the mRNA expression of osteogenic-related genes (Runx2, ALP and OCN, OPN and BMP-2) and the protein expression of signaling pathway (integrin α2, integrin β1, FAK and ERK1/2), these results indicated that 10 mM Mg2+/Col I coating play an critical role in up-regulating the MC3T3-E1 cells activity. The potential mechanisms of this specific performance may be through activating via integrin α2β1-FAK-ERK1/2 protein-coupled receptor pathway.


2000 ◽  
pp. 257-269 ◽  
Author(s):  
R Kumar ◽  
R K Vadlamudi ◽  
L Adam

Homeostasis in normal tissue is regulated by a balance between proliferative activity and cell loss by apoptosis. Apoptosis is a physiological mechanism of cell loss that depends on both pre-existing proteins and de novo protein synthesis, and the process of apoptosis is integral to normal mammary gland development and in many diseases, including breast cancer. The mammary gland is one of the few organ systems in mammals that completes its morphologic development postnatally during two discrete physiologic states, puberty and pregnancy. The susceptibility of the mammary gland to tumorigenesis is influenced by its normal development, particularly during stages of puberty and pregnancy that are characterized by marked alterations in breast cell proliferation and differentiation. Numerous epidemiologic studies have suggested that specific details in the development of the mammary gland play a critical role in breast cancer risk. Mammary gland development is characterized by dynamic changes in the expression profiles of Bcl-2 family members. The expression of Bcl-2 family proteins in breast cancer is also influenced by estradiol and by progestin. Since the ratio of proapoptotic to antiapoptotic proteins determines apoptosis or cell survival, hormone levels may have important implications in the therapeutic prevention of breast cancer.


2004 ◽  
Vol 183 (2) ◽  
pp. 267-277 ◽  
Author(s):  
B Anguiano ◽  
R Rojas-Huidobro ◽  
G Delgado ◽  
C Aceves

Peripartum is a crucial period for mammary gland final differentiation and the onset of lactation. Although the ‘trigger’ for lactogenesis depends on several hormones, a key factor is the peripartum prolactin (PRL) pulse whose deletion results in a failure to initiate milk production. Other hormones having a critical role during this period but exerting a contrary effect are the thyronines. A transitory hypothyroidism occurs at peripartum in serum and several other extrathyroidal tissues, whereas the induction of hyperthyroidism during late pregnancy is associated with the absence of lactation after delivery. We analyzed the mammary gland during pregnancy and lactation for: (a) the type and amount of thyroid receptors (TRs), (b) the local triiodothyronine (T3) generation catalyzed by type I deiodinase (Dio1), (c) the Dio1 response to norepinephrine (NE) and (d) the effect on Dio1 and TRs of blocking the PRL pulse at peripartum. Our data showed that during pregnancy the mammary gland contains Dio1 in low amounts associated with the highest expression of TRα1; whereas during lactation the gland shows high levels of both Dio1 and TRα1. However, at peripartum, both TRs and Dio1 decrease, and Dio1 becomes refractory to NE. This refractoriness disappears when the PRL pulse is blocked by the dopamine agonist bromocriptine. This blockade is also accompanied by a significant decrease in cyclin D1 expression. Our data suggested that the peripartum PRL pulse is part of a protective mechanism against precocious differentiation and/or premature involution of the alveolar epithelium due to T3 overexposure.


Sign in / Sign up

Export Citation Format

Share Document