A Review and Roadmap of the Skin, Lung, and Gut Microbiota in Systemic Sclerosis

Rheumatology ◽  
2021 ◽  
Author(s):  
Shannon Teaw ◽  
Monique Hinchcliff ◽  
Michelle Cheng

Abstract As our understanding of the genetic underpinnings of systemic sclerosis (SSc) increases, questions regarding the environmental trigger(s) that induce and propagate SSc in the genetically predisposed individual emerge. The interplay between the environment, the immune system, and the microbial species that inhabit the patient’s skin and gastrointestinal tract is a pathobiological frontier that is largely unexplored in SSc. The purpose of this review is to provide an overview of the methodologies, experimental study results, and future roadmap for elucidating the relationship between the SSc host and his/her microbiome.

2019 ◽  
Vol 7 (11) ◽  
pp. 480 ◽  
Author(s):  
Yang ◽  
Park ◽  
Park ◽  
Baek ◽  
Chun

The gut microbiota modulates overall metabolism, the immune system and brain development of the host. The majority of mammalian gut microbiota consists of bacteria. Among various model animals, the mouse has been most widely used in pre-clinical biological experiments. The significant compositional differences in taxonomic profiles among different mouse strains due to gastrointestinal locations, genotypes and vendors have been well documented. However, details of such variations are yet to be elucidated. This study compiled and analyzed 16S rRNA gene-based taxonomic profiles of 554 healthy mouse samples from 14 different projects to construct a comprehensive database of the microbiome of a healthy mouse gastrointestinal tract. The database, named Murine Microbiome Database, should provide researchers with useful taxonomic information and better biological insight about how each taxon, such as genus and species, is associated with locations in the gastrointestinal tract, genotypes and vendors. The database is freely accessible over the Internet at http://leb.snu.ac.kr/mmdb/.


2019 ◽  
Vol 7 (3) ◽  
pp. 66 ◽  
Author(s):  
Lorenzo Drago

Literature has recently highlighted the enormous scientific interest on the relationship between the gut microbiota and colon cancer, and how the use of some selected probiotics can have a future impact on the adverse events which occur during this disease. Although there is no clear evidence to claim that probiotics are effective in people with cancer, recent reviews have found that probiotics can significantly reduce the incidence of diarrhea and the average frequency of daily bowel movements. However, most of this evidence needs to be more clinically convincing and further discussed. Undoubtedly, some probiotics, when properly dosed and administered, can have a strong rebalance effect on the gut microbiota and as a consequence a possible positive action on immune modulation of the gastrointestinal tract and on inflammation of the intestinal mucosa. Many recent findings indeed support the hypothesis that the daily use of some selected probiotics can be a feasible approach to effectively protect patients against the risk of some severe consequences due to radiation therapy or chemotherapy. This paper aims to review the most recent articles in order to consider a possible adjuvant approach for the use of certain well-balanced probiotics to help prevent colon cancer and the adverse effects caused by related therapies.


Author(s):  
Wanyin Tao ◽  
Shu Zhu ◽  
Guorong Zhang ◽  
Xiaofang Wang ◽  
Meng Guo ◽  
...  

The current global COVID-19 pandemic is caused by beta coronavirus Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which already infected over 10 million and caused 500 thousand deaths by June 2020. Overproduction of cytokines triggered by COVID-19 infection, known as "cytokine storm", is a highly risk factor associated with disease severity. However, how COVID-19 infection induce cytokine storm is still largely unknown. Accumulating in vitro and in vivo evidence suggests that gut is also susceptible to COVID19 infection: Human intestinal organoids, an in vitro model which mimic the specific cell type and spatial structure of the intestine, were susceptible to SARS-CoV2 infection; A significant fraction of patients reported gut symptoms; Viral RNA may persist for more than 30 days and infectious virus could be isolated in fecal samples. The gastrointestinal tract is the primary site of interaction between the host immune system with symbiotic and pathogenic microorganisms. The bacteria resident in our gastrointestinal tract, known as gut microbiota, is important to maintain the homeostasis of our immune system. While imbalance of gut microbiota, or dysbiosis, is associated with multiple inflammation diseases5. It's possible that SARS-CoV-2 infection may lead to alternation of gut microbiota thus worsen the host symptom. IL-18 is a proinflammatory cytokine produced multiple enteric cells, including intestinal epithelial cells (IECs), immune cells as well as enteric nervous system, and was shown to increase in the serum of COVID-19 patients. Immunoglobin A (IgA) is mainly produced in the mucosal surfaces, in humans 40-60mg kg-1 day-1 than all other immunoglobulin isotypes combined, and at least 80% of all plasma cells are located in the intestinal lamina propria. Recent study showed that SARS-CoV-2 specific IgA in the serum is positively correlate with the disease severity in COVID-19 patients11. Here we investigated the alterations of microbiota in COVID-19 patients, and its correlation with inflammatory factor IL-18 and SARS-CoV2 specific IgA.


2019 ◽  
Vol 7 (3) ◽  
pp. 478-481
Author(s):  
Myriam Abboud ◽  
Dimitrios Papandreou

The gut microbiome is now considered as a large organ that has a direct effect on gastrointestinal tract, immune and endocrine system. There is no evidence that gut microbiota regulates the immune system and is responsible for bone formation and destruction. Probiotics have been shown through the gastrointestinal tract to have a positive effect on the management of the healthy bone. This article discusses the latest data available from PubMed and Scopus databases regarding gut microbiome, probiotics and bone briefly.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Monika Adamczyk-Sowa ◽  
Aldona Medrek ◽  
Paulina Madej ◽  
Wirginia Michlicka ◽  
Pawel Dobrakowski

Aim.Evaluation of the impact of gut microflora on the pathophysiology of MS.Results. The etiopathogenesis of MS is not fully known. Gut microbiota may be of a great importance in the pathogenesis of MS, since recent findings suggest that substitutions of certain microbial population in the gut can lead to proinflammatory state, which can lead to MS in humans. In contrast, other commensal bacteria and their antigenic products may protect against inflammation within the central nervous system. The type of intestinal flora is affected by antibiotics, stress, or diet. The effects on MS through the intestinal microflora can also be achieved by antibiotic therapy andLactobacillus. EAE, as an animal model of MS, indicates a strong influence of the gut microbiota on the immune system and shows that disturbances in gut physiology may contribute to the development of MS.Conclusions.The relationship between the central nervous system, the immune system, and the gut microbiota relates to the influence of microorganisms in the development of MS. A possible interaction between gut microbiota and the immune system can be perceived through regulation by the endocannabinoid system. It may offer an opportunity to understand the interaction comprised in the gut-immune-brain axis.


Author(s):  
Bhupendra Chaudhary ◽  
Ansh Chaudhary

The gut microbiota comprises of bacteria, viruses, protozoa and fungi living in different districts of human body with over 70% in gastrointestinal tract. They generally live in mutually beneficial relationships in gut. It has been proved that abnormalities in composition of microbiota are often associated with presence of common metabolic diseases, type 2 diabetes and lipid disorders. Recently gut microbiota are found to be major culprits in etiopathogenesis of various neuropsychiatric disorders which are triggered by stress induced down regulation of immune system of body. The association of gut microbiota with diseases like anxiety, depression, autism, bipolar disorder, Parkinson’s disease and multiple sclerosis has developed new insight in management of these diseases and advocates the need of further research in this area.


2021 ◽  
Vol 12 (1) ◽  
pp. 41-55
Author(s):  
Kristen A. Engevik ◽  
Melinda A. Engevik

The lumen of the gastrointestinal tract harbors a diverse community of microbes, fungi, archaea, and viruses. In addition to occupying the same enteric niche, recent evidence suggests that microbes and viruses can act synergistically and, in some cases, promote disease. In this review, we focus on the disease-promoting interactions of the gut microbiota and rotavirus, norovirus, poliovirus, reovirus, and astrovirus. Microbes and microbial compounds can directly interact with viruses, promote viral fitness, alter the glycan structure of viral adhesion sites, and influence the immune system, among other mechanisms. These interactions can directly and indirectly affect viral infection. By focusing on microbe–virus interplay, we hope to identify potential strategies for targeting offending microbes and minimizing viral infection.


Author(s):  
Xiaotong Yang ◽  
Rui Liang ◽  
Qianlu Xing ◽  
Xiaojuan Ma

The prevalence of food allergy (FA) is increasing, and there is an urgent need to take effective measures against it. One important measure is the avoidance diet, which shows a disadvantage, especially in case of accidental exposure. Oral tolerance restoration sheds new light on the control of FA. Oral tolerance is naturally a state of systemic unresponsiveness of the gastrointestinal tract to food antigens and its restoration can be a clinical therapy for FA. Its immune basis lies on the intestinal mucosal immune system and factors, such as gut microbiota and food processing methods, are also important. This review presents recent advances in oral tolerance and its closely related factors.


Sign in / Sign up

Export Citation Format

Share Document