scholarly journals Effect of different dosages of PG-600 on ovulation and pregnancy rates in ewes during the breeding season

2018 ◽  
Vol 3 (1) ◽  
pp. 429-432 ◽  
Author(s):  
Hayder Mohammed Hassan Habeeb ◽  
Timothy M Hazzard ◽  
Fred Stormshak ◽  
Michelle A Kutzler

Abstract This study compared the reproductive effects of different dosages of PG-600 (Intervet/Merck Animal Health, Madison, NJ) during the breeding season of ewes. PG-600 is a single-dose injectable product labeled for estrous induction in swine, containing equine chorionic gonadotropin (80 IU/mL) and human chorionic gonadotropin (40 IU/mL). PG-600 is routinely used off-label for out-of-season estrous induction in sheep. However, at the most common dose administered to ewes (5 mL), PG-600 is likely to overstimulate the ovaries, resulting in reduced pregnancy rates. Following estrous synchronization with intravaginal progesterone and cloprostenol, Polypay ewes were treated with 5 mL PG-600 (T1; n = 8), 1.5 mL PG-600 (T2; n = 8), or 5 mL saline (C; n = 8) and then mated to rams. Jugular vein samples were collected prior to the PG-600 injection (0 hr) and at 2, 4, 8, 12, and 24 hr after injection. Serum estradiol-17β was determined by chemiluminescence and among groups using repeated measures analysis of covariance. Ovulation and pregnancy rates were determined by transrectal ultrasonography and compared by one-way ANOVA and chi-square, respectively. Estradiol-17β concentrations were greater in T1 compared to T2 and C (P < 0.001). Ovulation rate was greater (P < 0.001) but pregnancy rate was lower (P < 0.001) in the T1 compared to C and T2. These data confirm that a 5 mL dose of PG-600 administered to ewes during the breeding season overstimulates the ovaries, which may then reduce fertilization or embryo survival. Future research will focus on the effects of different dosages of PG-600 on pregnancy rate of ewes during the nonbreeding season.

2019 ◽  
Vol 31 (1) ◽  
pp. 170
Author(s):  
C. Acevedo ◽  
S. Romo ◽  
C. López ◽  
A. Cortes-Mcnealy ◽  
M. I. Cruz-González ◽  
...  

Various permeating cryoprotectants, such as glycerol and ethylene glycol, have been used in the cryopreservation of embryos to help maintain cellular viability during indefinite and prolonged periods of storage in liquid nitrogen. The objective of this study was to compare the efficiency of glycerol (G) and ethylene glycol (EG) after storage in liquid nitrogen for a considerable period of time before transfer. The work was carried out in Palenque, Chiapas, Mexico. A total of 50 embryos were transferred, 24 Brahman (G) cryopreserved in the 1990s and 26 Brangus (EG) cryopreserved in 2010. Synchronous recipients were selected based on 3 characteristics: body condition (5-7, scale of 1-9), reproductive health, and multiparity. Recipient cows (n=62) were synchronized using a FTET protocol as follows. On Day 0, cows received a progesterone intravaginal device (CIDR) and 2mg of oestradiol benzoate IM. On day 8, the CIDR was removed and all cows received 25mg of dinoprost tromethamine (Lutalyse, Pfizer Animal Health, Montreal, Quebec, Canada), 200IU of eCG, and 0.5mg oestradiol cipionate IM. Day 10 was considered the day of oestrus and embryos were transferred (n=50) to the ipsilateral uterine horn of those recipients with a corpus luteum greater than 1.5cm in diameter on Day 17. The G embryos were produced with 4 bulls whereas the EG embryos were produced with 6 different bulls. The G straws were thawed for 12s in the air plus 12s in 20°C water. Embryos were immersed for 8min in a thawing solution containing 1.0M sucrose (ViGRO One-Step) and then transferred to holding medium (ViGRO Holding) for rehydration before loading into straws for embryo transfer. The EG embryos were thawed by allowing the straws to stand in air for 10s and then immersing them in a 30°C water bath for 10s and were transferred immediately. Pregnancy diagnosis 35 days after the transfer revealed 19 pregnancies of 50 embryos transferred (38%), distributed as 46% embryos in EG (12 pregnant of 26 transferred) and 29% embryos in G (7 pregnant of 24). A Fisher’s exact test was performed showing that no significant difference existed between groups (P>0.05). There was no effect of bull on pregnancy rates, and Brahman breed results by individual bull were 5 pregnancies of 13 (38%), 2 of 6 (33%), 0 of 4 (0%), and 0 of 1 (0%) for bulls I to IV, respectively. Pregnancy rate by Brangus bulls were 6 pregnancies of 7 (86%), 2 of 3 (67%), 2 of 4 (50%), 2 of 4 (50%), 0 of 4 (0%), and 0 of 3 (0%) for bulls 1 to 6, respectively. It is important to remember that the embryos cryopreserved in G remained in the nitrogen tank for more than 30 years, whereas the embryos cryopreserved in EG remained stored in liquid nitrogen for less than 10 years. Although pregnancy rate was numerically lower with Brahman embryos stored in G, pregnancy rates were considered acceptable considering the length of storage. Future research is needed with greater numbers and different breeds to determine whether G or EG will consistently produce higher embryo viability and pregnancies after storage for considerable periods before transfer.


2019 ◽  
Vol 59 (2) ◽  
pp. 225 ◽  
Author(s):  
Walvonvitis Baes Rodrigues ◽  
Jean do Prado Jara ◽  
Juliana Correa Borges ◽  
Luiz Orcirio Fialho de Oliveira ◽  
Urbano Pinto Gomes de Abreu ◽  
...  

The objective of this trial was to evaluate different post-timed artificial insemination (TAI) reproductive managements in postpartum beef cows to produce crossbred calves from artificial insemination (AI). Nellore cows (n = 607), with 45 days postpartum, were inseminated at a fixed time, using a protocol that included an intravaginal progesterone-releasing device along with oestradiol benzoate, prostaglandin, equine chorionic gonadotropin, and oestradiol cypionate, followed TAI 48 h post-device removal. Four post-TAI treatments were evaluated: in CONTROL (T1, n = 161), cows were exposed to Nellore clean-up bulls until the end of the breeding season (75 days). In OBSERVATION (T2, n = 132), heat detection was performed for 15–25 days post-TAI, followed by AI. In RESYNC22 (T3, n = 157) and RESYNC30 (T4, n = 157), resynchronisation started after 22 or 30 days, following second TAI at Day 32 or 40 days after first TAI. In T2, T3 and T4, after the second AI, cows were exposed to Nellore clean-up bulls until the end of the breeding season (75 days). The pregnancy rate (PR) for the first TAI did not differ (54.6%, 53.0%, 59.2%, and 51.6% for CONTROL, OBSERVATION, RESYNC 22, and RESYNC 30, respectively; P = 0.66), and no difference was observed for the second TAI (RESYNC 22 = 45.31% and RESYNC30 = 46.05%; P = 0.137), in the PR at the end of the breeding season (86.33%, 86.36%, 78.98%, and 81.52%, P = 0.43), or embryonic losses (4.54%, 2.85%, 6.45% and 7.40%, respectively; P = 0.61), but the percentage of crossbred pregnancy was higher in groups with resynchronisation (RESYNC22 and RESYNC30) than CONTROL and OBSERVATION (98.38%, 90.62%, 63.30%, 78.95%, P < 0.001). In conclusion, resynchronisation programs of 22 or 30 days are more efficient to produce AI products, and the final pregnancy rate is similar among the treatments, differing only in the amount of calves produced by AI.


2020 ◽  
Vol 89 (4) ◽  
pp. 307-315
Author(s):  
Hasan Alkan ◽  
Huseyin Erdem

The aim of this study was to investigate the effects of hormonal support on the pregnancy rate in repeat breeder cows. Prostaglandin F2α + Ovsynch oestrus synchronization protocol was applied to the cows. Following the fixed time insemination (day 0), the cows were divided into 4 groups. In Group 1 (n = 42), progesterone releasing intravaginal device (PRID) was placed vaginally at 84 h and removed on the 9th day after the artificial insemination. In Group 2 (n = 40), the cows were administered human chorionic gonadotropin (hCG) on the 7th day. Group 3 (n = 45) was applied a combination of progesterone and hCG. Group 4 (n = 42) was not given any treatment. Blood samples were collected from all cows 4 times on days 3.5, 7, 12, and 18 to evaluate progesterone concentrations. The pregnancy rates were 40.47%, 37.50%, 44.44%, and 30.95% in Group 1, 2, 3, and 4, respectively (P > 0.05). In addition, in cows with progesterone concentrations <2 ng/ml on day 3.5, the pregnancy rates were found to be lower than in the cows with progesterone concentrations >2 ng/ml in Group 4 (P < 0.05). Progesterone supplementation in cows with progesterone concentrations < 2 ng/ml appeared to increase pregnancy rates (P < 0.05) in Groups 1 and 3. As a result, post-insemination hormonal applications in the repeat breeder cows did not increase the pregnancy rate. However, it was concluded that determination of progesterone concentrations on day 3.5 following artificial insemination and then hormonal support in the cows with low concentrations would increased the pregnancy rate.


2013 ◽  
Vol 25 (1) ◽  
pp. 229
Author(s):  
J. W. Thorne ◽  
C. R. Looney ◽  
J. F. Hasler ◽  
D. K. Hockley ◽  
D. W. Forrest

This study was performed to test the viability of administering Folltropin-V® (FSH, Bioniche Animal Health) diluted in hyaluronan (MAP-5 50 mg, sodium hyaluronate, Bioniche Animal Health) to beef cows enrolled in a recipient synchronization protocol to evaluate its effect on recipient fertility. All recipients were administered an estradiol 17β (2.5 mg, IM) and progesterone (50 mg, IM) combination injection on Day 0, a CIDR® (progesterone 1.34 g, Pfizer Animal Health, Groton, CT, USA) was inserted for 7 days. Lutalyse® (dinoprost tromethamine, Pfizer Animal Health, 25 mg, IM) was administered at the time of CIDR removal on Day 7, and estradiol 17β (1 mg, IM) was administered on Day 8. On Day 16, the presence of at least one corpus luteum, detected via ultrasound, resulted in the recipient receiving an embryo (both fresh and frozen–thawed embryos were used). Embryos were not transferred into cows that did not show ultrasonic evidence of a CL. Dependent variables for which data were collected included circulating progesterone levels at the time of transfer and CL diameter, area, and circumference; measured in millimeters. The total study (n = 274) consisted of both wet (n = 85) and dry (n = 189) cows and included both Bos indicus (Brahman-influenced) crossbred (n = 93) and Bos taurus (Angus-based) cows (n = 181). The experiment consisted of cows being placed in either the treated or control groups, with treated cows receiving a single 40 mg (1 mL) IM injection of Folltropin-V in hyaluronan on Day 5 and control cows receiving no additional injections. Results are shown in Table 1. Transfer rate, conception rate, and pregnancy rate were tested for significance with chi-square analysis and remaining statistics were analyzed with a t-test: two-sample assuming equal variances. There were no significant differences found between the treated and control groups for transfer rate, conception rate, or pregnancy rate. Corpus luteum diameter was shown to be larger in control cows (P < 0.05); however, CL area and circumference did not differ significantly. Folltropin-V given with hyaluronan at a 40-mg dose on Day 5 did not improve fertility, induce a larger CL, or increase circulating progesterone levels in synchronized beef recipients as hypothesized. Further work is needed with Folltropin-V in hyaluronan to determine if an alternative dose or timing of administration would be more appropriate for improving fertility in recipients. Table 1.Fertility data in beef recipients following synchronization for fixed-time embryo transfer with a protocol that included (Treated) or did not include (Control) FSH in hyaluronan


2008 ◽  
Vol 20 (1) ◽  
pp. 90 ◽  
Author(s):  
J. Small ◽  
F. Dias ◽  
L. Pfeifer ◽  
K. Lightfoot ◽  
M. Colazo ◽  
...  

In previous studies, giving eCG at CIDR removal significantly increased the pregnancy rate after timed-AI in beef cows. However, eCG is not universally available. Therefore, we tested the hypothesis that giving pFSH at CIDR removal might improve the pregnancy rate in a CIDR-based, Cosynch protocol in postpartum, suckled Bos taurus beef cows; a secondary objective was to compare pregnancy rates when GnRH v. pLH was used to synchronize wave emergence and ovulation. This work was conducted as two experiments (separate locations). All cows were given a CIDR (containing 1.9 g progesterone; Pfizer Animal Health, Montreal, QC, Canada) on Day 0 (without regard to stage of estrous cycle or cyclicity). On Day 7, CIDRs were removed, all cows were concurrently given 25 mg PGF (Lutalyse; Pfizer Animal Health, Groton, CT, USA), half were given 20 mg pFSH (Folltropin-V; Bioniche Animal Health, Belleville, ON, Canada), and all cows were timed-AI 54 h later (Day 9). In Experiment 1, 240 cows [94 � 10.8 days postpartum; body condition score (BCS: 1 = emaciated, 9 = obese; mean � SD): 5.8 � 0.4] were used; at CIDR insertion and AI, cows were allocated to receive either 100 µg GnRH (n = 160; Cystorelin, Merial Canada Inc., Victoriaville, QC, Canada) or 12.5 mg pLH (n = 80; Lutropin-V, Bioniche Animal Health). In Experiment 2, 109 cows (59.2 � 19.5 days postpartum; BCS: 5.6 � 1.1) were used; all received 100 µg GnRH (Cystorelin) at CIDR insertion and AI. In Experiment 1, three cows that lost their CIDR were excluded; pregnancy rates after timed-AI (logistic regression, backward selection: parity, pFSH, synchronizing treatment, and their interactions) were not different between cows given pFSH v. control cows (64.7 v. 65.2%; P > 0.80), nor between cows given GnRH v. pLH (62.7 v. 69.6%; P = 0.91). However, there was an interaction (P < 0.04) between parity and the synchronizing treatment; in primiparous cows, pregnancy rates were significantly lower in those given GnRH v. pLH (59.3 v. 83.3%). In Experiment 2, pregnancy rates after timed-AI (logistic regression, backward selection: parity, pFSH, and their interaction) were not different between cows given pFSH v. control cows (38.2 v. 42.6%; P > 0.6). In conclusion, our hypothesis was not supported; giving pFSH at CIDR removal did not significantly improve the pregnancy rate in a CIDR-based, Cosynch protocol in postpartum, suckled Bos taurus beef cows.


2020 ◽  
pp. 089484532090226
Author(s):  
Vítor Gamboa ◽  
Maria Paula Paixão ◽  
José Tomás da Silva ◽  
Maria do Céu Taveira

Given the increased self-directedness of todays’ career environment, career goals represent to some extent the exercise of individual agency, particularly during ecological transitions (e.g., school to work). The main purpose of this study was to analyze the relationship between internship quality and career exploration behavior, considering students’ career goals content (labor market vs. higher education). Using a longitudinal design (pre- and post-internship), we conducted a study (12th grade; N = 191) that explores the relationship between perceived qualities of the internship and the different dimensions of career exploration. Analysis of variance and analysis of covariance, with repeated measures, were used to analyze the data. The results reinforce the importance of career goals, since they seem to have a differentiating effect on how the quality of the internship interacts with students’ career exploration behavior. Finally, the implications of these findings for career interventions and for future research in this area are discussed.


2017 ◽  
Vol 46 (1) ◽  
pp. 62-76 ◽  
Author(s):  
Lia D. Falco ◽  
Jessica J. Summers

This study evaluated whether a career group intervention that incorporates the four sources of self-efficacy and addresses perceived career barriers is effective at improving the career decision self-efficacy and science, technology, engineering, and mathematics (STEM) self-efficacy for adolescent girls. Of the 88 girls in our study, 42 students were Latina and 46 were White, 40 were freshman, and 48 were sophomores attending the same high school. From this sample, 44 of these girls participated in a 9-week treatment group. Using repeated measures analysis of covariance with ethnicity and grade as covariates, results indicated that, compared with the control group ( n = 44), participants in the treatment group improved significantly on variables of career decision self-efficacy and STEM self-efficacy and increased those gains at 3-month follow-up. The discussion focuses on implications for career counseling, limitations of the study, and future research.


2013 ◽  
Vol 25 (1) ◽  
pp. 156
Author(s):  
D. Romero ◽  
G. Romero ◽  
G. Veneranda ◽  
L. Filippi ◽  
D. Racca ◽  
...  

An experiment was designed to compare pregnancy rates in lactating dairy cows synchronized with a 7-day CIDR-Synch or a 5-day CIDR-Synch program and to determine if the addition of a second prostaglandin F2α (PGF) injection to the 7-day CIDR-Synch program would improve pregnancy rates following fixed-time AI (FTAI). The experiments were performed on 2 dairy farms in Argentina, with year-round calving and a mixed feeding system (35% grazing plus 65% corn silage and grain). Cows (n = 621) were 39.3 ± 6.5 days in milk (DIM, mean ± SD) when they were enrolled in the program, had 2.4 ± 1.5 lactations and a body condition score (BCS) of 3.1 ± 0.2 (range: 2.7 to 4.0). All cows received a pre-synchronization treatment with 2 doses of prostaglandin (PGF, 25 mg of dinoprost, Lutalyse, Pfizer Animal Health, Argentina) 14 days apart, and 11 days after the second PGF (Day 0) received 10 µg of Buserelin (GnRH, Receptal, MSD-Intervet, Argentina) and a CIDR device (1.9 g of progesterone, Pfizer Animal Health). Cows were randomly allocated to 1 of 3 groups. The CIDR devices were removed and PGF was administered to cows in Groups 1 and 2 on Day 7. A second GnRH was given 56 h later and cows experienced FTAI 16 h after gonadotropin-releasing hormone (GnRH) injection (i.e. 72 h after CIDR removal). Cows in Group 2 also received a second PGF injection on the afternoon of Day 7. Cows in Group 3 had the CIDR removed and received 2 PGF injections 12 h apart on Day 5. A second dose of GnRH was given and FTAI was performed at the same time, on Day 8 (i.e. 72 h after CIDR removal). All cows were examined by ultrasonography (Aloka 500V, Aloka, Tokyo, Japan) on the day of the first PGF injection and at CIDR removal to determine the presence and number of corpora lutea (CL), and 30 days after FTAI to determine pregnancy status. Data were analyzed by logistic regression to determine the effects of treatment, parity, days postpartum, milk production, BCS, presence of a CL at enrollment, and number of CL at the time of CIDR removal on pregnancy rates. Overall pregnancy rates did not differ among groups: 32.9% (68/207), 38.2% (78/204), and 38.3% (80/209) for Groups 1, 2, and 3, respectively (P = 0.2). Although the number of CL present at CIDR removal did not significantly affect pregnancy rates (P = 0.4), pregnancy rates in cows with 1 CL in Groups 1 and 2 tended to differ [29.0% (11/38) v. 48.9% (21/43); P < 0.07], but neither differed from that in Group 3 [37.2% (16/43)]. No differences were detected among groups in cows without a CL at CIDR removal [overall pregnancy rate: 29.4% (5/17)] and those with ≥2 CL [overall pregnancy rate: 36.1% (173/479)]. Among the other variables evaluated, first-parity cows had 1.96 (1.38–2.78) times more chance of getting pregnant than second-or-more-parity cows (P = 0.002) and cows with BCS >3 had 1.63 (1.16–2.28) times more chance of getting pregnant than those with BCS <3 (P = 0.003). Finally, herd, days postpartum, milk production, and presence of a CL at enrollment did not significantly affect pregnancy rates. We concluded that the 3 treatments resulted in similar pregnancy rates for lactating dairy cows and that the benefit of adding a second PGF injection to the 7-day protocol was only marginal in cows with 1 CL at CIDR removal.


2014 ◽  
Vol 26 (1) ◽  
pp. 119
Author(s):  
A. J. Davis ◽  
J. G. Powell ◽  
T. D. Lester ◽  
R. W. Rorie

A study investigated the effect of AI timing on pregnancy rate when using X sorted semen, and whether prostaglandin F2α (PGF2) injection on Day 7 of a modified 14-day progesterone (P4) protocol improved oestrous response in beef cows. Angus-based cows were allotted across treatment groups by cyclicity, parity, weight, body condition, and days postpartum. Treatment 1 (n = 132) cows received a CIDR P4 insert (Eazi-Breed CIDR, Pfizer Animal Health, Groton, CT, USA) on Day 0, with CIDR removal on Day 14, followed by 100 μg of gonadotropin-releasing hormone (GnRH; Factrel, Pfizer) on Day 16, and 25 mg of PGF2 (Lutalyse, Pfizer) on Day 23. Treatment 2 (n = 132) cows received the same synchronization treatment, except for an additional 25 mg dose of PGF2 given on Day 7 of CIDR treatment. Cows were observed for oestrus over an 84-h period and inseminated with X-sorted semen at 9 to 14, 15 to 17, 18 to 21 or 22 to 24 h after detected oestrus, followed 10 days later by exposure to fertile bulls for 45 days. Ultrasonography was used to determine pregnancy status ~45 days after AI and again 45 to 55 days after bull removal. Chi-squared analysis was used to determine the effects of treatment on oestrus response, AI pregnancy, and seasonal pregnancy rates, and the effect of AI timing on pregnancy rate. Analysis of variance was used to determine the effects of treatment on the interval from PGF2 dosing to detected oestrus. Oestrus response to synchronization treatment was similar (P = 0.33) at 76.5 and 71.2% for cows in Treatments 1 and 2, respectively. The mean interval from PGF2 to the onset of oestrus was extended (P = 0.03) ~3 h for cows in Treatment 2 (57.4 v. 54.3 h, respectively). About two-thirds of the cows in each treatment were cyclic at the start of synchronization. The extended interval from PGF2 to observed oestrus was due to an effect on cyclic, but not acyclic, cows in Treatment 2. Of the cows expressing oestrus, 69 and 89% expressed oestrus 48 to 72 h post-PGF2 in Treatments 1 and 2, respectively. Pregnancy rates after AI with sorted semen were similar (P = 0.64) at 63.3 and 66.7% for Treatments 1 and 2, respectively. No differences (P = 0.98) were detected in AI pregnancy rates for insemination intervals ranging from 9 to 24 h after detected oestrus. At the end of the breeding season, seasonal pregnancy rates were also similar (P = 0.74), at 83.3 and 84.9% for cows in Treatments 1 and 2, respectively. The addition of a PGF2 treatment on Day 7 of our 14-day CIDR-based protocol was expected to ensure all cows has sub-luteal P4 concentrations and would develop a persistent follicle capable of ovulation in response to GnRH given on Day 16. Whereas the Day 7 PGF2 treatment had no effect on oestrus response or pregnancy rate, it did result in a more synchronous oestrus within a 24-h period. Results indicate that acceptable pregnancy rates can be achieved in lactating beef cows when using sorted semen over a range of insemination times.


1999 ◽  
Vol 79 (1) ◽  
pp. 39-43 ◽  
Author(s):  
J. Thundathil ◽  
J. P. Kastelic ◽  
W. O. Olson ◽  
R. B. Cook ◽  
R. J. Mapletoft

Three experiments were conducted with suckled crossbred beef cows to determine the efficacy of various short-term regimens for synchronizing estrus or ovulation and to determine whether feeding melengestrol acetate (MGA) after timed AI will increase pregnancy rate. In exp. 1, all cows (n = 141) were given 0.5 mg MGA head−1 d−1 for 7 d (days 1 to 7), 1 or 5 mg E17β (and 100 mg progesterone) or 100 µg GnRH on day 1, and 500 µg cloprostenol on day 7. There were no significant differences among groups for estrous or synchronized conception rates (average, 84.4 and 52.1%, respectively). With an identical protocol in exp. 2 (78 cows), by day 11, cows given 5 mg E17β had the highest estrous and synchronized pregnancy rates (65.4 and 42.3%), compared to 1 mg E17β (46.2 and 15.4%) and GnRH (34.6 and 11.5%). Cows not detected in estrus were timed-inseminated and given 100 µg GnRH, 100 h after cloprostenol. There were no significant differences among groups for synchronized conception rate to timed AI (65.0%) or synchronized pregnancy rate to all inseminations (56.4%). Overall, 5 mg E17β gave the most consistent results. In exp. 3, 84 cows were given 100 µg GnRH on days 1 and 9, 500 µg cloprostenol on day 7, and were timed-inseminated on day 10. Half were fed MGA (0.5 mg head−1 d−1) on days 16 to 22, but the pregnancy rate was not different from that in the remaining cows (55.0 versus 47.8%, P > 0.5). Key words: Ovary, follicles, estrus synchronization, beef cows


Sign in / Sign up

Export Citation Format

Share Document