scholarly journals In vitro and in situ techniques yield different estimates of ruminal disappearance of barley

2019 ◽  
Vol 4 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Mary E DeFeo ◽  
Kelsey V Shampoe ◽  
Pedro H V Carvalho ◽  
Flavia A S Silva ◽  
Tara L Felix

Abstract Objectives were to compare in vitro and in situ disappearance of dry matter (DM), neutral detergent fiber (NDF), and starch of traditional (unprocessed and rolled) and hulless (unprocessed) barley. Experiment 1: three barley sources were compared using in vitro techniques. The sources were: 1) traditional barley that was not processed, 2) traditional barley processed through a roller mill, and 3) hulless barley that was not processed. For in vitro incubation, each barley source was ground through a 1-mm screen. Ground barley sources were weighed into bags (25 micron porosity) and incubated in ruminal fluid from two steers fed 80% rolled corn for 3, 6, 12, 24, 48, or 72 h. Intact bags were assayed for NDF; remaining bags were opened and the residual was removed and analyzed to determine disappearance of DM and starch. Experiment 2: the barley sources used in Exp. 1 were compared using in situ techniques. For in situ analysis, each barley source was ground in a Wiley mill with no screen to mimic mastication. Artificially masticated samples were weighed into Dacron bags (50 ± 10 micron porosity) and incubated in eight ruminally fistulated steers (n = 8) for 3, 6, 12, 24, 48, and 72 h. Residual contents were analyzed to determine in situ disappearance of DM, NDF, and starch. Data were analyzed using the MIXED procedures of SAS (9.4 SAS Institute, Cary, NC) with repeated measures. DM disappearance was greatest (P < 0.05) for hulless barley in vitro and for rolled barley in situ, regardless of time postincubation. For both trials, NDF disappearance was greatest (P < 0.05) for hulless barley, regardless of time postincubation. Starch disappearance at all time points was greatest (P < 0.05) for rolled barley in situ. Starch disappearance was greater (P < 0.05) for hulless barley at 6 h of in vitro incubation compared to rolled and unprocessed barley, whereas starch disappearance in vitro was comparable (P = 0.60) between barley sources. When the grains were compared in vitro, minor differences were noted, presumably because barley sources were finely ground prior to incubation. Compared to in vitro estimates, in situ techniques had greater variation in ruminal degradation estimates. Differences observed between in situ and in vitro techniques are driven largely by differences between the procedures. Although laboratory methods are widely used to estimate ruminal degradation, these techniques did not provide comparable estimates of ruminal degradation of barley.

2015 ◽  
Vol 95 (4) ◽  
pp. 493-498 ◽  
Author(s):  
Tiago Neves Pereira Valente ◽  
Edenio Detmann ◽  
Cláudia Batista Sampaio

Valente, T. N. P., Detmann, E. and Sampaio, C. B. 2015. Review: Recent advances in evaluation of bags made from different textiles used in situ ruminal degradation. Can. J. Anim. Sci. 95: 493–498. Textile bags are used in the laboratory to analyze the indigestible contents (internal markers) of feedstuffs after in situ ruminal incubation. Information is needed on the rate and extent of degradation in the rumen using bags made from different materials. In situ techniques have been used extensively to measure the degradation of feedstuffs in the rumen. However, in situ techniques are prone to variability. This paper reviews the effects of particle size, the material from which bags are made, pore size, tensile strength of the bags, in situ estimation of the levels of indigestible compounds [indigestible dry matter (iDM), indigestible neutral detergent fiber (iNDF), and indigestible acid detergent fiber (iADF)], rumen degradation profiles, and the use of bags made from nylon (50 µm), F57 (Ankom®), and non-woven textile (100 g m−2).


1997 ◽  
Vol 80 (11) ◽  
pp. 2925-2931 ◽  
Author(s):  
M.L. England ◽  
G.A. Broderick ◽  
R.D. Shaver ◽  
D.K. Combs

2016 ◽  
Vol 96 (4) ◽  
pp. 524-531 ◽  
Author(s):  
Q.Q. Huang ◽  
L. Jin ◽  
Z. Xu ◽  
S. Acharya ◽  
T.A. McAllister ◽  
...  

In situ and in vitro experiments were conducted to evaluate the effect of forage conservation method on the chemical composition, ruminal degradation, and intestinal digestion of purple prairie clover (PPC), which was conserved as freeze-dried forage (FD), silage (SIL), or hay (Hay). In situ dry matter (DM), neutral detergent fiber (NDF), and crude protein (CP) degradabilities were determined by incubating the forages in three rumen-cannulated heifers for 0, 1, 2, 4, 8, 24, 48, and 72 h. Intestinal DM and CP digestions were estimated by incubating 12 h ruminal in situ residues in a modified three-step in vitro procedure. Ensiling decreased (P < 0.001) extractable condensed tannins (CT) but increased (P < 0.001) protein- and fiber-bound CT compared with FD and Hay. The ruminal disappearance of CP at 8 and 24 h was affected by conservation method (P < 0.001), ranked as SIL > FD > Hay. The effective degradability of DM was lower (P < 0.001) for Hay than for FD and SIL. Ensiling lowered (P < 0.001) whereas haymaking increased (P < 0.001) intestinal digestion of CP compared with the fresh PPC. There were no differences in intestinal DM digestion among the three conserved forages. The results suggest that PPC conserved as Hay may conserve the biological activity of CT via preserving extractable CT more than as SIL, thus having the potential to improve protein utilization in ruminants.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Kim Margarette C. Nogoy ◽  
Jia Yu ◽  
Young Gyu Song ◽  
Shida Li ◽  
Jong-Wook Chung ◽  
...  

The amaranth plants showed high potential feed value as forage for ruminants. An in-depth study of this plant, particularly in cattle, will help extend its utilization as an alternative protein and fiber feed source in cattle feeding. In this study, the nutrient compositions of three different species of amaranth, Amaranthus caudatus L., Amaranthus cruentus L., and Amaranthus hypochondriacus L.—two varieties for each species, A.ca 74, A.ca 91, A.cu 62, A.cu 66, A. hy 30, and A. hy 48—were evaluated. The in vitro technique was used to evaluate the fermentation characteristics such as total gas production, total volatile fatty acids (VFA) concentration, pH, and ammonia concentration of the rumen fluid. Moreover, the effective degradabilities of dry matter (EDDM) and crude protein (EDCP) of the amaranth forages were determined through in situ bag technique. The amaranth forages: A. caudatus, A. cruentus, and A. hypochondriacus showed better nutritive value than the locally produced forages in Chungcheong province of Korea. The CP of the amaranth ranged from 11.95% to 14.19%, and the neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents ranged from 45.53% to 70.88% and 34.17% to 49.83%, respectively. Among the amaranth varieties, A. hypochondriacus 48 showed the most excellent ruminant feed nutrient quality (CP, 14.19%; NDF, 45.53%; and ADF, 34.17%). The effective degradabilities of dry matter (EDDM; 33–56%) and crude protein EDCP (27–59%) of the amaranth were lower compared to other studies, which could be due to the maturity stage at which the forages were harvested. Nonetheless, A. hypochondriacus 48 showed the highest EDDM (56.73%) and EDCP (59.09%). The different amaranth species did not differ greatly in terms of total VFA concentration or molar proportions, total gas production, or ammonia-N concentration. The high nutrient composition, and highly effective degradability of dry matter and crude protein, coupled with the favorable fermentation characteristics, suggest that the amaranth forages showed good to excellent feed quality for cattle.


2014 ◽  
Vol 44 (10) ◽  
pp. 1845-1852 ◽  
Author(s):  
Michelle Schalemberg Diehl ◽  
Clair Jorge Olivo ◽  
Carlos Alberto Agnolin ◽  
Ricardo Lima de Azevedo Junior ◽  
Vinícius Felipe Bratz ◽  
...  

The objective of this research was to evaluate of three grazing systems (GS) with elephant grass (EG), Italian ryegrass (IR) + spontaneous growing species (SGS); EG + IR + SGS + forage peanut (FP); and EG + IR + SGS + red clover (RC), during the winter and summer periods in rotational grazing with dairy cattle. Experimental design was completely randomized with three treatments, two replicates with repeated measures. Lactating Holstein cows receiving 1% BW-daily feed supplement with concentrate were used in the evaluation. Eight grazing cycles were performed during the experimental period. The values of pre forage mass and stocking rate were 2.52, 2.60 and 2.99 t ha-1 and 2.64, 2.77 and 3.14 animal unit ha-1, respectively for GS. Samples of forage were collected by hand-plucking technique to analyze the crude protein (CP), neutral detergent fiber (NDF), in situ dry matter digestibility (ISDMD), in situ organic matter digestibility (ISOMD) of forage present between rows of elephant grass, in the rows of elephant grass and the legumes. Higher value of CP, ISOMD and lower of NDF were observed for the grazing systems mixed with legumes forage.


1992 ◽  
Vol 72 (4) ◽  
pp. 881-889 ◽  
Author(s):  
Z. Mir ◽  
P. S. Mir ◽  
S. Bittman ◽  
L. J. Fisher

The degradation characteristics of dry matter (DM), protein, neutral detergent fiber (NDF) and acid detergent fiber (ADF) of corn–sunflower intercrop silage (CSS) and monoculture corn silage (CS) prepared from whole plants, harvested at two stages of maturity, were compared using eight mature rumen-cannulated steers. The degradation characteristics were determined by incubating the silages in nylon bags for up to 72 h in the rumen of animals fed the respective silages. The degradation characteristics determined for the silages were the soluble fraction, the insoluble but degradable fractions, the rate of degradation of the degradable fractions of silage DM and protein, and the in situ disappearance of NDF and ADF after 0.5 and 72 h of incubation. The rate of particulate passage from the rumen was determined using chromium-mordanted NDF of the four silages. Values were used to estimate effectively degraded DM and protein. The rates of DM and protein degradation were highest for late-cut CSS (6.3 and 6.0% h−1, respectively) and the least for late-cut CS (2.5 and 0.8% h−1, respectively). Averaged across stages of maturity, more (P < 0.05) DM and protein were effectively degraded with CSS (57.4 and 70.1%, respectively) than with CS (48.8 and 48.7%). Degradation of NDF in early-cut CSS was lower (P < 0.05) than in CS after 72 h of incubation. ADF disappearance from all of the silages after 72 h of incubation was similar. Ruminal degradation of DM and protein in CSS was greater than in CS, which may affect efficiency of utilization of CSS. Key words: Degradation rate, effective degradability, corn silage, intercropped corn–sunflower, steers


2005 ◽  
Vol 6 (1) ◽  
pp. 100
Author(s):  
Diego Chamorro ◽  
Juan Evangelista Carulla ◽  
Pablo Cuesta

<p>Para cuantificar la degradación <em>in situ </em>de tejidos vegetales y su relación con la composición química de especies forrajeras se seleccionaron láminas foliares de las gramíneas <em>Bouteloua repens </em>y <em>Bothriochloa pertusa </em>y foliolos de las leguminosas <em>Stylosanthes scabra</em>, <em>Desmodium barbatum </em>y <em>Tephrosia cinerea</em>. En el rumen se incuba­ron muestras de 10 mm de largo durante 0, 12, 24, 48 y 72 horas; para la lectura del área residual se digitalizaron ocho tejidos. A las 24 y 48 h de incubación <em>B. pertusa </em>presentó relaciones positivas entre la degradación de la epidermis adaxial (EA) y la FDN (R2= 90,2), entre el mesófilo y la DIVMS (R2=80,1), y entre los tejidos len­tamente degradables (TLD) y la FDA (R2= 83,9); y relaciones negativas entre EA y DIVMS (R2= –73,1), los TLD con la DEF (R2= –74,3), la EA con la PC (R2= –87,6), y el esclerenquima con la DIVMS y la PC (R2= –84,3 y R2= –90,8). Después de 72 horas de incubación las mayores áreas residuales en gramíneas fueron la estructura kranz entre 34,2% y 36,5%, el mesófilo entre 20,9% y 21,4%, el xilema de 11,5% a 17,1% y la EA entre 11,8% y 13,9%; no obstante el esclerénquima se relacionó estrechamente con indicadores de calidad nutricional. Las gramíneas obtuvieron mayores porcen­tajes de tejidos no degradables que las leguminosas; por lo tanto, la DIVMS y la DEF fueron menores. Entre las leguminosas, <em>S. scabra</em>, presentó la mayor digestibilidad de los tejidos rápidamente degradables, tanto en sequía como en lluvia; en la época seca se incrementó en 134,6% la degradación de estos tejidos. Adicionalmente, en esta especie el área residual de los taninos no presentó relación directa con la degra­dación del mesófilo. En leguminosas la tasa y extensión de la degradación de las epidermis se incrementaron marcadamente a mayor tiempo de incubación, presen­tándose diferencias entre especies, situación que no exhibieron las gramíneas. En <em>D. barbatum </em>la degradación de la EA se asoció con la DIVMS y la DEF, explicando en 77,4% y 72,95% estos porcentajes; de igual manera se reportaron relaciones negati­vas entre la degradabilidad de la epidermis y los porcentajes de FDN, FDA, lignina y taninos (R2= –0,76; R2= –0,79; R2= –0,53 y R2= –0,76, respectivamente).</p><p> </p><p><strong>Microbial <em>in situ </em>degradation of grasses and legumes leaf tissues and its realtionship with nutritional quality and precipitation</strong></p><p>A study was conducted to measure the <em>in situ </em>de- gradation of plant tissues and its relationship with forage chemical composition in leaves of the grasses <em>Bouteloua repens </em>and <em>Bothriochloa pertusa </em>and of the legumes <em>Stylosanthes scabra</em>, <em>Desmodium barbatum </em>and <em>Tephrosia cinerea</em>. Forage samples of 10 mm in length were incubated in the rumen for 0, 12, 24, 48 and 72 h and tissue residual area was determined by reading the residual area in eight digitalized leaf samples per forage. In <em>B. pertusa</em>, after 24 and 48 h of incubation there were positive relations between the degradation of adaxial epidermis (AE) and the neutral detergent fiber (NDF, R2 = 90.2), between mesophyll and in vitro dry matter degradability (IVDMD, R2 = 80,1), and between slowly degradable tissues (SDT) and the acid detergent fiber (ADF, R2 = 83.9); and negative relationships between AE and IVDMD (R2 = -73,1), between SDT and effective dry matter degradation (EDMD, R2 = -74,3), between AE and crude protein (CP, R2 = -87,6), and between sclerenchyma and IVDMD with CP (R2 = -84,3 and R2 = -90,8, respectively). After 72 h of incubation, the greater residual areas in grasses were the Kranz structure (34.2% to 36.5%), mesophyll (20.9% to 21.4%), xylem (11.5% to 17.1%) and AE (11.8% to 13.9%). The area of sclerenchyma was related close­ly to indicators of nutritional quality. Overall, the grasses had greater content of non-degradable tis­sues than the legumes; therefore, their IVDMD and EDMD were lower. Among the legumes, <em>S. scabra </em>showed the greater digestibility of rapidly degrada­ble tissues, both during the rainy and dry seasons. At the dry season, the degradation of these tissues increased by 134.6%. Additionally, in this legume, the content of tannins did not have a direct relation­ship with the degradation of mesophyll. The rate and extension of the degradation of epidermis in legumes, were noticeably increased with increasing length of incubation, existing differences between species, a situation which was not observed in the grasses. In <em>D. barbatum</em>, the degradation of the AE was positively associated with both the IVDMD and EDMD (R2 = 77,4% and 72,95%, respectively). On the other hand, the degradability of epidermis and the percentage of NDF had negative relations with ADF, lignin and tannins (R2 = -0,76; R2 = -0,79; R2 = -0,53 and R2 = -0,76, respectively).</p>


2007 ◽  
Vol 2007 ◽  
pp. 166-166 ◽  
Author(s):  
Hamid Mohammadzadeh ◽  
Ali Nikkhah ◽  
Kamran Reza-Yazdi ◽  
Hassan Mehrabani-Yeganeh

Dairy producers use soyhulls, a byproduct of soybean processing, to replace either grain or forage in diets of lactating dairy cows. In view of the nutritional and economical value of soyhulls it is anticipated that this practice will continue to increase in popularity among nutritionists and producers of ruminant animals. According to the NRC (2001), SH contain 60.3% NDF and 44.6% ADF on a DM basis. Also The CP content of SH averaged 11.8%, which is within the range of 13.9± 4.6%. The objectives of this paper are to evaluate the in vitro DM and OM digestibility and in situ degradability of DM, CP and NDF contents of soybean hulls.


2020 ◽  
Vol 158 (1-2) ◽  
pp. 150-158 ◽  
Author(s):  
B. C. Silva ◽  
M. V. C. Pacheco ◽  
L. A. Godoi ◽  
F. A. S. Silva ◽  
D. Zanetti ◽  
...  

AbstractAn experiment was conducted to evaluate: (1) the effects of ensiling maize or sorghum grains after reconstitution on readily soluble fraction (a), potentially degradable fraction in the rumen (b) and rate constant for degradation of b (c) of dry matter (DM), organic matter (OM) and starch (STA); and (2) an appropriate incubation time for in situ or in vitro procedures to estimate in vivo digestibility. Four rumen-cannulated Nellore bulls (body weight = 262 ± 19.6 kg) distributed in a 4 × 4 Latin square were used. Diets were based on dry ground maize (DGM); or dry ground sorghum (DGS); or reconstituted ground maize silage; or reconstituted ground sorghum silage. In vitro and in situ incubations of the individual grains and diets were simultaneously performed with in vivo digestibility. In general, reconstituted grains and diets based on reconstituted grains presented greater (P < 0.05) fraction a and lower (P < 0.05) fraction b of DM, OM and STA compared to dry grains and diets based on dry grain. However, the magnitude of response of the reconstitution and ensiling process on DM and OM degradability parameter was greater for maize than that for sorghum. Moreover, no differences (P > 0.05) were observed between DGM- and DGS-based diets for c estimates. The results suggest that the reconstitution process promotes grains protein matrix breakdown increasing STA availability. The incubation times required for in vivo digestibility estimations of DM, OM and STA are 24 h for in situ and 36 h for in vitro procedures.


Sign in / Sign up

Export Citation Format

Share Document