Minimum spring temperatures at the provenance origin drive leaf phenology in sugar maple populations

2020 ◽  
Vol 40 (12) ◽  
pp. 1639-1647
Author(s):  
Xiali Guo ◽  
Siddhartha Khare ◽  
Roberto Silvestro ◽  
Jianguo Huang ◽  
Jean-Daniel Sylvain ◽  
...  

Abstract Late frost can cause damage to trees, especially to the developing bud of broadleaf species in spring. Through long-term adaptation, plants adjust leaf phenology to achieve an optimal trade-off between growing season length and frost avoidance. In this study, we aim to assess ecotypic differentiation in leaf development of sugar maple populations planted in a common garden. A total of 272 sugar maple seedlings from 29 Canadian provenances were planted at the northern boundary of the natural range, and the phenological phases of bud and leaf development were monitored during spring 2019. The wide geographical area under evaluation showed a complex seasonal pattern of temperature, with spring warming occurring later in the north and close to the sea. Overall, leaf development lasted between 20 and 36 days, from the end of May to end of June. We observed different timings and rates of leaf development among provenances, demonstrating the occurrence of ecotypes in this species. Minimum April temperatures of the original sites were able to explain such differences, while maximum April temperatures were not significant. Seedlings from sites with colder minimum April temperatures completed leaf development earlier and faster. On average, leaf development diverged by up to 6 days among provenances, with minimum April temperatures ranging from −3 to 3 °C. Our results demonstrated that the avoidance of late spring frost is a driving force of leaf development in sugar maple populations. In the colder sites, the growing season is a limiting factor for tree growth. Thus, when thermal conditions become favorable in spring, an earlier growth reactivation and high metabolic activity ensure a fast leaf emission, which maximizes the period available for photosynthesis and growth. These patterns demonstrate the long-term phenological adaptation of sugar maple populations to local climatic conditions and suggest the importance of frost events for leaf development.

2012 ◽  
Vol 51 (11) ◽  
pp. 2060-2073 ◽  
Author(s):  
Kari E. Skaggs ◽  
Suat Irmak

AbstractAir temperature influences agricultural practices and production outcomes, making detailed quantifications of temperature changes necessary for potential positive and negative effects on agricultural management practices to be exploited or mitigated. Temperature trends of long-term data for five agricultural locations, ranging from the subhumid eastern to the semiarid western parts of Nebraska, were studied to determine local temperature changes and their potential effects on agricultural practices. The study quantified trends in annual and monthly average maximum and minimum air temperature (Tmax and Tmin), daily temperature range (DTR), total growing degree-days, extreme temperatures, growing‐season dates and lengths, and temperature distributions for five heavily agricultural areas of Nebraska: Alliance, Central City, Culbertson, Fremont, and Hastings. July and August were the months with the greatest decreases in Tmax for the central part of Nebraska—Culbertson, Hastings, and Central City. Alliance, Culbertson, and Fremont had year-round decreases in DTR. Central City and Hastings experienced growing‐season decreases in DTR. Increases in growing‐season length occurred at rates of 14.3, 16.7, and 11.9 days century−1 for Alliance, Central City, and Fremont, respectively. At Hastings, moderately earlier last spring frost (LS) at a rate of 6.6 days century−1 was offset by an earlier (2.7 days century−1) first fall frost (FF), resulting in only a 3.8 days century−1 longer growing season. There were only slight changes in LS and FF dates of around 2 days earlier and 1 day later per century, respectively, for Culbertson.


1979 ◽  
Vol 51 (1) ◽  
pp. 197-209
Author(s):  
Seppo Pulli ◽  
P. M. A. Tigerstedt ◽  
Osmo Kara

Trials with maize varieties from various places in the world were started in 1975. In preliminary trials in 1975, 280 varieties were tested. Between 19 and 23 varieties were selected for ordinary variety tests in 1976—78 at the University farm in Siuntio. Weather conditions, particularly average daily temperatures in 1975 were better than the long term averages, and in 1976—78 far below the average growing conditions. Dry matter yields of the seven harvested silage varieties in 1975 varied between 5.8 and 11.5 tons/ha. In 1976—78 the variation in DM yields was 3.8—8.0 tons/ha among 19—23 varieties. In 1975, 44 varieties out of 280 produced mature seed. Only one variety matured in 1978, but none in 1976—77. The developmental stage of silage maize is primarily determined by ear percentage and secondarily by DM %. In 1975 the average ear % of seven varieties was 49.1 %, in 1978 18.1 % and in 1976—77 only 4.0—5.7 % in DM. As a result of the variety tests promising varieties from Yugoslavia, France and Germany could be found. It can be concluded from the long term temperature data that with very early hybrid varieties a mature grain yield can be harvested twice in ten years. Good quality silage material can be harvested six times in ten years and a satisfactory crop can be obtained eight times in then years. The limiting factor for the growth and development of maize in Finland is the low average temperature of the growing season. Important but less significant is the length of the vegetative period, which is determined by the first killing frost in the fall. The temperature deficit is particularly critical at the beginning of the growing season.


2016 ◽  
Vol 8 (1) ◽  
pp. 78-88
Author(s):  
Erika Bouchard ◽  
Zhiming Qi

Long-term trends in air temperature and precipitation under climate change were analyzed for two meteorological stations on the Island of Montreal: McGill (1872–1986) and Pierre-Elliott-Trudeau (P-E-T, formerly Dorval) Airport (1942–2014). A linear trendline analysis, the Mann–Kendall (MK) test and the two-sample Kolmogorov–Smirnov (KS) test were conducted to assess specific climate trends. On a 100-year basis, temperature increased 1.88°C (34%) and 1.18°C (19%) at the McGill and P-E-T Airport sites, respectively, while annual rainfall increased 23.9 mm y−1 (2.3%) and 138.8 mm y−1 (15%) over the same period. The frequency of 50% (every other year) and 95% (every year) annual maximum daily rainfall events showed decreasing trends for the McGill station, but increasing trends for the P-E-T Airport station. Growing degree-days and growing season length are prone to being influenced by climate change and are critical to managing agricultural activities in the Montreal region; both showed increasing trends. At the same time, the onset of the growing season occurred earlier as time progressed.


Author(s):  
Marina Evgenievna Belyshkina ◽  
Tamara Petrovna Kobozeva ◽  
Elena Vasilevna Gureyeva

Based on long-term data, the article considers the peculiarities of growth and development of soybean varieties of the Northern ecotype depending on the conditions of the growing season and the influence of limiting factors. The need of soy plants for heat and moisture increases from seed germination to germination, then to the phases of flowering and bean formation, while their uniform distribution is important. In the absence of abnormal periods of drought or waterlogging, soybean varieties of the Northern ecotype Mature in August – early September. The purpose of the research was to determine the degree of influence of variability of agrometeorological conditions of the vegetation period in different years on the production process of soybean varieties of the Northern ecotype and to assess the possibility of their cultivation in the Ryazan and other regions of the Central district of the Non-Chernozem zone. The experiments were carried out in 2009–2019 years with varieties of soya of Northern ecotype Mahewa, Bright and the Whale. The limiting factor in some years of research in the conditions of the Ryazan region was the lack of moisture, while the biological minimum temperatures were maintained at all stages of growth and development. As a result of the analysis of the average annual temperature and precipitation data, the most favorable conditions for the cultivation of all the studied soybean varieties for seeds are formed in the Bryansk, Oryol and Ryazan regions. For Vladimir, Ivanovo, Kaluga, Moscow, Smolensk and Tula regions, the varieties Kasatka and Mageva are recommended, for Kostroma, Tver, and Yaroslavl – Kasatka. In all areas of the Central region of the Non-Chernozem zone, these varieties can be used to obtain green mass, silage and haylage.


2019 ◽  
Author(s):  
John O'Connor ◽  
Maria J. Santos ◽  
Karin T. Rebel ◽  
Stefan C. Dekker

Abstract. The Amazon rainforest evapotranspiration (ET) flux provides climate regulating and moisture provisioning ecosystem services through a moisture recycling system. The dense complex canopy and deep root system creates an optimum structure to provide large ET fluxes to the atmosphere forming the source for precipitation. Extensive land use and land cover change (LULCC) from forest to agriculture in the arc of deforestation breaks this moisture recycling system. Crops such as soybean are planted in large homogeneous monocultures and the maximum rooting depth of these crops is far shallower than forest. This difference in rooting depth is key as forests can access deep soil moisture and show no signs of water stress during the dry season while in contrast crops are highly seasonal with a growing season dependant on rainfall. As access to soil moisture is a limiting factor in vegetation growth, we hypothesised that if crops could access soil moisture they would undergo less water stress and therefore would have higher evapotranspiration rates than crops which could not access soil moisture. We combined remote sensing data with modelled groundwater table depth (WTD) to assess whether vegetation in areas with a shallow WTD had higher ET than vegetation in deep WTD areas. We randomly selected areas of forest, savanna and crop with deep and shallow WTD and examined whether they differ on MODIS Evapotranspiration (ET), Land Surface Temperature (LST) and Enhanced Vegetation Index (EVI), from 2001 to 2012, annually and during transition periods between the wet and dry season. As expected, we found no differences in ET, LST, and EVI for forest vegetation between deep and shallow WTD, which because of their deep roots could access water and maintain evapotranspiration for moisture recycling during the entire year. We found significantly higher ET and lower LST in shallow WTD crop areas than in deep WTD during the dry season transition, suggesting that crops in deep WTD undergo higher water stress than crops in shallow WTD areas. The differences found between crop in deep and shallow WTD, however, are of low significance with regards the moisture recycling system as the difference resulting from conversion of forest to crop has an overwhelming influence (ET in forest is ≈ 2 mm day−1 higher than that in crops) and has the strongest impact on energy balance and ET. However, access to water during the transition between wet and dry seasons may positively influence growing season length in crop areas.


AMBIO ◽  
2020 ◽  
Vol 49 (11) ◽  
pp. 1747-1758 ◽  
Author(s):  
Hannah Wenng ◽  
Marianne Bechmann ◽  
Tore Krogstad ◽  
Eva Skarbøvik

Abstract Land use and climate change can impact water quality in agricultural catchments. The objectives were to assess long-term monitoring data to quantify changes to the thermal growing season length, investigate farmer adaptations to this and examine these and other factors in relation to total nitrogen and nitrate water concentrations. Data (1991–2017) from seven small Norwegian agricultural catchments were analysed using Mann–Kendall Trend Tests, Pearson correlation and a linear mixed model. The growing season length increased significantly in four of seven catchments. In catchments with cereal production, the increased growing season length corresponded to a reduction in nitrogen concentrations, but there was no such relationship in grassland catchments. In one cereal catchment, a significant correlation was found between the start of sowing and start of the thermal growing season. Understanding the role of the growing season and other factors can provide additional insight into processes and land use choices taking place in agricultural catchments.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1133
Author(s):  
Wenjun Chen ◽  
Lori White ◽  
Sylvain G. Leblanc ◽  
Rasim Latifovic ◽  
Ian Olthof

Arctic temperatures have increased at almost twice the global average rate since the industrial revolution. Some studies also reported a further amplified rate of climate warming at high elevations; namely, the elevation dependency of climate change. This elevation-dependent climate change could have important implications for the fate of glaciers and ecosystems at high elevations under climate change. However, the lack of long-term climate data at high elevations, especially in the Arctic, has hindered the investigation of this question. Because of the linkage between climate warming and plant phenology changes and remote sensing’s ability to detect the latter, remote sensing provides an alternative way for investigating the elevation dependency of climate change over Arctic mountains. This study investigated the elevation-dependent changes to plant phenology using AVHRR (Advanced Very High Resolution Radiometer) time series from 1985 to 2013 over five study areas in Canada’s Arctic. We found that the start of the growing season (SOS) became earlier faster with an increasing elevation over mountainous study areas (i.e., Sirmilik, the Torngat Mountains, and Ivvavik National Parks). Similarly, the changes rates in the end of growing season (EOS) and the growing season length (GSL) were also higher at high elevations. One exception was SOS in the Ivvavik National Park: “no warming trend” with the May-June temperature at a nearby climate station decreased slightly during 1985–2013, and so no elevation-dependent amplification.


Author(s):  
S.V. Chernobai ◽  
V.K. Riabchun ◽  
T.B. Kapustina ◽  
V.S. Melnyk ◽  
O.E. Shchechenko

Goal. To build up a spring triticale genetic bank to provide breeding, scientific and educational institutions with initial material and to preserve the existing diversity. To update the database of accessions with a set of valuable economic and morphological features. Results and discussion. The methodology and results of the collection formation and evaluation of spring triticale accessions in the National Center for Plant Genetic Resources of Ukraine of Plant Production Institute nd. a V. Ya. Yuriev are presented. The formed collection includes 1,935 accessions from 27 countries: 42 varieties and 1,478 breeding lines from Ukraine, 92 varieties and 248 lines from foreign countries and also 75 genetic lines. The collection was formed by major valuable economic features (plant height, growing season length, spike threshing, yield, 1000-grain weight, disease resistance, technological properties, etc.). Accessions with the majority of morpho-biological and valuable economic features were selected. All the accessions in the collection are certificated. 1,762 accessions were packed for storage into the National Depository; 1,507 of them were packed for long-term storage. Conclusions. The gene pool of spring triticale from the collection of the Gene Bank of Plants of Ukraine is widely used for breeding. This allows conducting hybridization of genetically and ecologically remote forms with various expressions of features and obtaining whole new breeding material. Involvement of collection accessions in breeding allows generating new genetic sources of valuable economic features.


2020 ◽  
Vol 110 (1) ◽  
pp. 49-57 ◽  
Author(s):  
C. Alcaide ◽  
M. P. Rabadán ◽  
M. Juárez ◽  
P. Gómez

Mixed viral infections are common in plants, and the evolutionary dynamics of viral populations may differ depending on whether the infection is caused by single or multiple viral strains. However, comparative studies of single and mixed infections using viral populations in comparable agricultural and geographical locations are lacking. Here, we monitored the occurrence of pepino mosaic virus (PepMV) in tomato crops in two major tomato-producing areas in Murcia (southeastern Spain), supporting evidence showing that PepMV disease-affected plants had single infections of the Chilean 2 (CH2) strain in one area and the other area exhibited long-term (13 years) coexistence of the CH2 and European (EU) strains. We hypothesized that circulating strains of PepMV might be modulating the differentiation between them and shaping the evolutionary dynamics of PepMV populations. Our phylogenetic analysis of 106 CH2 isolates randomly selected from both areas showed a remarkable divergence between the CH2 isolates, with increased nucleotide variability in the geographical area where both strains cocirculate. Furthermore, the potential virus–virus interaction was studied further by constructing six full-length infectious CH2 clones from both areas, and assessing their viral fitness in the presence and absence of an EU-type isolate. All CH2 clones showed decreased fitness in mixed infections and although complete genome sequencing indicated a nucleotide divergence of those CH2 clones by area, the magnitude of the fitness response was irrespective of the CH2 origin. Overall, these results suggest that although agroecological cropping practices may be particularly important for explaining the evolutionary dynamics of PepMV in tomato crops, the cocirculation of both strains may have implications on the genetic variability of PepMV populations.


Sign in / Sign up

Export Citation Format

Share Document