scholarly journals The influence of water table depth on evapotranspiration in the Amazon arc of deforestation

2019 ◽  
Author(s):  
John O'Connor ◽  
Maria J. Santos ◽  
Karin T. Rebel ◽  
Stefan C. Dekker

Abstract. The Amazon rainforest evapotranspiration (ET) flux provides climate regulating and moisture provisioning ecosystem services through a moisture recycling system. The dense complex canopy and deep root system creates an optimum structure to provide large ET fluxes to the atmosphere forming the source for precipitation. Extensive land use and land cover change (LULCC) from forest to agriculture in the arc of deforestation breaks this moisture recycling system. Crops such as soybean are planted in large homogeneous monocultures and the maximum rooting depth of these crops is far shallower than forest. This difference in rooting depth is key as forests can access deep soil moisture and show no signs of water stress during the dry season while in contrast crops are highly seasonal with a growing season dependant on rainfall. As access to soil moisture is a limiting factor in vegetation growth, we hypothesised that if crops could access soil moisture they would undergo less water stress and therefore would have higher evapotranspiration rates than crops which could not access soil moisture. We combined remote sensing data with modelled groundwater table depth (WTD) to assess whether vegetation in areas with a shallow WTD had higher ET than vegetation in deep WTD areas. We randomly selected areas of forest, savanna and crop with deep and shallow WTD and examined whether they differ on MODIS Evapotranspiration (ET), Land Surface Temperature (LST) and Enhanced Vegetation Index (EVI), from 2001 to 2012, annually and during transition periods between the wet and dry season. As expected, we found no differences in ET, LST, and EVI for forest vegetation between deep and shallow WTD, which because of their deep roots could access water and maintain evapotranspiration for moisture recycling during the entire year. We found significantly higher ET and lower LST in shallow WTD crop areas than in deep WTD during the dry season transition, suggesting that crops in deep WTD undergo higher water stress than crops in shallow WTD areas. The differences found between crop in deep and shallow WTD, however, are of low significance with regards the moisture recycling system as the difference resulting from conversion of forest to crop has an overwhelming influence (ET in forest is ≈ 2 mm day−1 higher than that in crops) and has the strongest impact on energy balance and ET. However, access to water during the transition between wet and dry seasons may positively influence growing season length in crop areas.

2019 ◽  
Vol 23 (9) ◽  
pp. 3917-3931 ◽  
Author(s):  
John O'Connor ◽  
Maria J. Santos ◽  
Karin T. Rebel ◽  
Stefan C. Dekker

Abstract. The Amazon rainforest evapotranspiration (ET) flux provides climate-regulating and moisture-provisioning ecosystem services through a moisture recycling system. The dense complex canopy and deep root system creates an optimum structure to provide large ET fluxes to the atmosphere, forming the source of precipitation. Extensive land use and land cover change (LULCC) from forest to agriculture in the arc of deforestation breaks this moisture recycling system. Crops such as soybean are planted in large homogeneous monocultures and the maximum rooting depth of these crops is far shallower than forest. This difference in rooting depth is key as forests can access deep soil moisture and show no signs of water stress during the dry season, while in contrast crops are highly seasonal with a growing season dependent on rainfall. As access to soil moisture is a limiting factor in vegetation growth, we hypothesised that if crops could access soil moisture, they would undergo less water stress and therefore would have higher evapotranspiration rates than crops which could not access soil moisture. We combined remote-sensing data with modelled groundwater table depth (WTD) to assess whether vegetation in areas with a shallow WTD had higher ET than vegetation in deep WTD areas. We randomly selected areas of forest, savanna, and crop with deep and shallow WTD and examined whether they differ on MODIS Evapotranspiration (ET), Land Surface Temperature (LST), and Enhanced Vegetation Index (EVI), from 2001 to 2012, annually and during transition periods between the wet and dry seasons. As expected, we found no differences in ET, LST, and EVI for forest vegetation between deep and shallow WTD, which because of their deep roots could access water and maintain evapotranspiration for moisture recycling during the entire year. We found significantly higher ET and lower LST in shallow WTD crop areas than in deep WTD during the dry season transition, suggesting that crops in deep WTD undergo higher water stress than crops in shallow WTD areas. The differences found between crop in deep and shallow WTD, however, are of low significance with regards to the moisture recycling system, as the difference resulting from conversion of forest to crop has an overwhelming influence (ET in forest is ≈2 mm d−1 higher than that in crops) and has the strongest impact on energy balance and ET. However, access to water during the transition between wet and dry seasons may positively influence growing season length in crop areas.


2013 ◽  
Vol 1 (No. 4) ◽  
pp. 127-138 ◽  
Author(s):  
Duffková Renata

In 2003–2005 in conditions of the moderately warm region of the Třeboň Basin (Czech Republic) the difference between canopy temperature (Tc) and air temperature at 2 m (Ta) was tested as an indicator of grass­land water stress. To evaluate water stress ten-minute averages of temperature difference Tc–Ta were chosen recorded on days without rainfall with intensive solar radiation from 11.00 to 14.00 CET. Water stress in the zone of the major portion of root biomass (0–0.2 m) in the peak growing season (minimum presence of dead plant residues) documented by a sudden increase in temperature difference, its value 5–12°C and unfavourable canopy temperatures due to overheating (> 30°C) was indicated after high values of suction pressure approach­ing the wilting point (1300 kPa) were reached. High variability of temperature difference in the conditions of sufficient supply of water to plants was explained by the amount of dead plant residues in canopy, value of va­pour pressure deficit (VPD), actual evapotranspiration rate (ETA) and soil moisture content. At the beginning of the growing season (presence of dead plant residues and voids) we proved moderately strong negative linear correlations of Tc–Ta with VPD and Tc–Ta with ETA rate and moderately strong positive linear correlations of ETA rate with VPD. In the period of intensive growth (the coverage of dead plant residues and voids lower than 10%) moderately strong linear correlations of Tc–Ta with VPD and multiple linear correlations of Tc–Ta with VPD and soil moisture content at a depth of 0.10–0.40 m were demonstrated.


Plant Disease ◽  
2000 ◽  
Vol 84 (8) ◽  
pp. 895-900 ◽  
Author(s):  
S. R. Kendig ◽  
J. C. Rupe ◽  
H. D. Scott

The effects of irrigation and soil water stress on Macrophomina phaseolina microsclerotial (MS) densities in the soil and roots of soybean were studied in 1988, 1989, and 1990. Soybean cvs. Davis and Lloyd received irrigation until flowering (TAR2), after flowering (IAR2), full season (FSI), or not at all (NI). Soil water matric potentials at 15- and 30-cm depths were recorded throughout the growing season and used to schedule irrigation. Soil MS densities were determined at the beginning of each season. Root MS densities were determined periodically throughout the growing season. Microsclerotia were present in the roots of irrigated as well as nonirrigated soybean within 6 weeks after planting. By vegetative growth stage V13, these densities reached relatively stable levels in the NI and FSI treatments (2.23 to 2.35 and 1.35 to 1.63 log [microsclerotia per gram of dry root], respectively) through reproductive growth stage R6. After R6, irrigation was discontinued and root densities of microsclerotia increased in all treatments. Initiation (IAR2) or termination (TAR2) of irrigation at R2 resulted in significant changes in root MS densities, with densities reaching levels intermediate between those of FSI and NI treatments. Year to year differences in root colonization reflected differences in soil moisture due to rainfall. The rate of root colonization in response to soil moisture stress decreased with plant age. Root colonization was significantly greater in Davis than Lloyd at R5 and R8. This was reflected in a trend toward higher soil densities of M. phaseolina at planting in plots planted with Davis than in plots planted with Lloyd. Although no charcoal rot symptoms in the plant were observed in this study, these results indicated that water management can limit, but not prevent, colonization of soybean by M. phaseolina, that cultivars differ in colonization, and that these differences may affect soil densities of the fungus.


2012 ◽  
Vol 9 (12) ◽  
pp. 5373-5389 ◽  
Author(s):  
M. Wilkinson ◽  
E. L. Eaton ◽  
M. S. J. Broadmeadow ◽  
J. I. L. Morison

Abstract. The carbon balance of an 80-yr-old deciduous oak plantation in the temperate oceanic climate of the south-east of Great Britain was measured by eddy covariance over 12 yr (1999–2010). The mean annual net ecosystem productivity (NEP) was 486 g C m−2 yr−1 (95% CI of ±73 g C m−2 yr−1), and this was partitioned into a gross primary productivity (GPP) of 2034 ± 145 g C m−2 yr−1, over a 165 (±6) day growing season, and an annual loss of carbon through respiration and decomposition (ecosystem respiration, Reco) of 1548 ± 122 g C m−2 yr−1. Although the maximum variation of NEP between years was large (333 g C m−2 yr−1), the ratio of Reco/GPP remained relatively constant (0.76 ± 0.02 CI). Some anomalies in the annual patterns of the carbon balance could be linked to particular weather events, such as low summer solar radiation and low soil moisture content (values below 30% by volume). The European-wide heat wave and drought of 2003 did not reduce the NEP of this woodland because of good water supply from the surface-water gley soil. The inter-annual variation in estimated intercepted radiation only accounted for ~ 47% of the variation in GPP, although a significant relationship (p < 0.001) was found between peak leaf area index and annual GPP, which modified the efficiency with which incident radiation was used in net CO2 uptake. Whilst the spring start and late autumn end of the net CO2 uptake period varied substantially (range of 24 and 27 days respectively), annual GPP was not related to growing season length. Severe outbreaks of defoliating moth caterpillars, mostly Tortrix viridana L. and Operophtera brumata L., caused considerable damage to the forest canopy in 2009 and 2010, resulting in reduced GPP in these two years. Inter-annual variation in the sensitivity of Reco to temperature was found to be strongly related to summer soil moisture content. The eddy covariance estimates of NEP closely matched mensuration-based estimates, demonstrating that this forest was a substantial sink of carbon over the 12-yr measurement period.


2020 ◽  
Vol 8 (12) ◽  
pp. 171-178
Author(s):  
Abdullaev Ravshan Mavlyanovich ◽  
◽  
Abdullaeva Khilola Ravshanovna ◽  

The article reveals the data on the drought tolerance of strawberry cultivars, studied the water content and water stress in the leaves of strawberry cultivars belonging to different ecological groups. Currently, water deficiency and the amount of water available for irrigation are a limiting factor in expanding the area under crops and increasing productivity. In the experiments, the air temperature, relative humidity, water content in the leaves and the effect of soil moisture on water scarcity and the correlation between them were studied by taking samples from the leaves of strawberry cultivars before and after irrigation of the experimental fields.


2020 ◽  
Vol 40 (12) ◽  
pp. 1639-1647
Author(s):  
Xiali Guo ◽  
Siddhartha Khare ◽  
Roberto Silvestro ◽  
Jianguo Huang ◽  
Jean-Daniel Sylvain ◽  
...  

Abstract Late frost can cause damage to trees, especially to the developing bud of broadleaf species in spring. Through long-term adaptation, plants adjust leaf phenology to achieve an optimal trade-off between growing season length and frost avoidance. In this study, we aim to assess ecotypic differentiation in leaf development of sugar maple populations planted in a common garden. A total of 272 sugar maple seedlings from 29 Canadian provenances were planted at the northern boundary of the natural range, and the phenological phases of bud and leaf development were monitored during spring 2019. The wide geographical area under evaluation showed a complex seasonal pattern of temperature, with spring warming occurring later in the north and close to the sea. Overall, leaf development lasted between 20 and 36 days, from the end of May to end of June. We observed different timings and rates of leaf development among provenances, demonstrating the occurrence of ecotypes in this species. Minimum April temperatures of the original sites were able to explain such differences, while maximum April temperatures were not significant. Seedlings from sites with colder minimum April temperatures completed leaf development earlier and faster. On average, leaf development diverged by up to 6 days among provenances, with minimum April temperatures ranging from −3 to 3 °C. Our results demonstrated that the avoidance of late spring frost is a driving force of leaf development in sugar maple populations. In the colder sites, the growing season is a limiting factor for tree growth. Thus, when thermal conditions become favorable in spring, an earlier growth reactivation and high metabolic activity ensure a fast leaf emission, which maximizes the period available for photosynthesis and growth. These patterns demonstrate the long-term phenological adaptation of sugar maple populations to local climatic conditions and suggest the importance of frost events for leaf development.


2014 ◽  
Vol 27 (2) ◽  
pp. 574-591 ◽  
Author(s):  
Anna Harper ◽  
Ian T. Baker ◽  
A. Scott Denning ◽  
David A. Randall ◽  
Donald Dazlich ◽  
...  

Abstract Moisture recycling can be an important source of rainfall over the Amazon forest, but this process relies heavily upon the ability of plants to access soil moisture. Evapotranspiration (ET) in the Amazon is often maintained or even enhanced during the dry season, when net radiation is high. However, ecosystem models often over predict the dry season water stress. The authors removed unrealistic water stress in an ecosystem model [the Simple Biosphere Model, version 3 (SiB3)] and examined the impacts of enhanced ET on the dry season climate when coupled to a GCM. The “stressed” model experiences dry season water stress and limitations on ET, while the “unstressed” model has enhanced root water access and exhibits strong drought tolerance. During the dry season in the southeastern Amazon, SiB3 unstressed has significantly higher latent heat flux (LH) and lower sensible heat flux (SH) than SiB3 stressed. There are two competing impacts on the climate in SiB3 unstressed: cooling resulting from lower SH and moistening resulting from higher LH. During the average dry season, the cooling plays a larger role and the atmosphere is more statically stable, resulting in less precipitation than in SiB3 stressed. During dry season droughts, significantly higher LH in SiB3 unstressed is a necessary but not sufficient condition for stronger precipitation. The moistening effect of LH dominates when the Bowen ratio (BR = SH/LH) is &gt;1.0 in SiB3 stressed and precipitation is up to 26% higher in SiB3 unstressed. An implication of this analysis is that forest conservation could enable the Amazon to cope with drying conditions in the future.


Weed Science ◽  
2020 ◽  
pp. 1-6
Author(s):  
Asad M. Khan ◽  
Ahmadreza Mobli ◽  
Jeff A Werth ◽  
Bhagirath S. Chauhan

Abstract Slender amaranth (Amaranthus viridis L.) and redroot pigweed (Amaranthus retroflexus L.) are increasingly problematic weeds of summer crops in Australia. Water is considered the most limiting factor in an agroecosystem, and water stress adversely impacts the growth and reproduction of plant species. The primary objective of this study was to determine the growth and fecundity of two Australian biotypes (Goondiwindi and Gatton) of A. viridis and A. retroflexus under water-stress conditions. Four water-stress treatments (100%, 75%, 50%, and 25% field capacity [FC]) at a 4-d irrigation interval were chosen. No difference was observed for growth and seed production between the two biotypes of both species when grown under varying soil moisture regimes. At 100% FC, A. viridis produced 44 g plant−1 aboveground biomass and 1,740 seeds plant−1. The maximum growth (46 g plant−1) and seed production (3,070 seeds plant−1) of A. retroflexus were observed at 100% FC. The growth and seed production of both species were reduced with increased water-stress levels. Both weeds responded to water stress by decreasing the shoot:root biomass ratio. However, A. viridis (290 seeds plant−1) and A. retroflexus (370 seeds plant−1) were able to produce a significant number of seeds per plant even at 25% FC. Results suggest that both weeds will produce seeds under water-limiting conditions. Therefore, management strategies are required to minimize the growth and survival of weeds in water-deficit conditions.


2021 ◽  
Vol 13 (19) ◽  
pp. 3907
Author(s):  
Simon Kloos ◽  
Ye Yuan ◽  
Mariapina Castelli ◽  
Annette Menzel

Droughts during the growing season are projected to increase in frequency and severity in Central Europe in the future. Thus, area-wide monitoring of agricultural drought in this region is becoming more and more important. In this context, it is essential to know where and when vegetation growth is primarily water-limited and whether remote sensing-based drought indices can detect agricultural drought in these areas. To answer these questions, we conducted a correlation analysis between the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) within the growing season from 2001 to 2020 in Bavaria (Germany) and investigated the relationship with land cover and altitude. In the second step, we applied the drought indices Temperature Condition Index (TCI), Vegetation Condition Index (VCI), and Vegetation Health Index (VHI) to primarily water-limited areas and evaluated them with soil moisture and agricultural yield anomalies. We found that, especially in the summer months (July and August), on agricultural land and grassland and below 800 m, NDVI and LST are negatively correlated and thus, water is the primary limiting factor for vegetation growth here. Within these areas and periods, the TCI and VHI correlate strongly with soil moisture and agricultural yield anomalies, suggesting that both indices have the potential to detect agricultural drought in Bavaria.


Sign in / Sign up

Export Citation Format

Share Document