scholarly journals Differential Expression of Fungal Genes Determines the Lifestyle of Plectosphaerella Strains During Arabidopsis thaliana Colonization

2020 ◽  
Vol 33 (11) ◽  
pp. 1299-1314 ◽  
Author(s):  
Antonio Muñoz-Barrios ◽  
Sara Sopeña-Torres ◽  
Brisa Ramos ◽  
Gemma López ◽  
Irene del Hierro ◽  
...  

The fungal genus Plectosphaerella comprises species and strains with different lifestyles on plants, such as P. cucumerina, which has served as model for the characterization of Arabidopsis thaliana basal and nonhost resistance to necrotrophic fungi. We have sequenced, annotated, and compared the genomes and transcriptomes of three Plectosphaerella strains with different lifestyles on A. thaliana, namely, PcBMM, a natural pathogen of wild-type plants (Col-0), Pc2127, a nonpathogenic strain on Col-0 but pathogenic on the immunocompromised cyp79B2 cyp79B3 mutant, and P0831, which was isolated from a natural population of A. thaliana and is shown here to be nonpathogenic and to grow epiphytically on Col-0 and cyp79B2 cyp79B3 plants. The genomes of these Plectosphaerella strains are very similar and do not differ in the number of genes with pathogenesis-related functions, with the exception of secreted carbohydrate-active enzymes (CAZymes), which are up to five times more abundant in the pathogenic strain PcBMM. Analysis of the fungal transcriptomes in inoculated Col-0 and cyp79B2 cyp79B3 plants at initial colonization stages confirm the key role of secreted CAZymes in the necrotrophic interaction, since PcBMM expresses more genes encoding secreted CAZymes than Pc2127 and P0831. We also show that P0831 epiphytic growth on A. thaliana involves the transcription of specific repertoires of fungal genes, which might be necessary for epiphytic growth adaptation. Overall, these results suggest that in-planta expression of specific sets of fungal genes at early stages of colonization determine the diverse lifestyles and pathogenicity of Plectosphaerella strains.

2015 ◽  
Vol 59 (9) ◽  
pp. 5357-5365 ◽  
Author(s):  
Hilde Smith ◽  
Alex Bossers ◽  
Frank Harders ◽  
Guanghui Wu ◽  
Neil Woodford ◽  
...  

ABSTRACTThe aim of the study was to identify the plasmid-encoded factors contributing to the emergence and spread of epidemic IncI1-Iγ plasmids obtained fromEscherichia coliandSalmonella entericaisolates from animal and human reservoirs. For this, 251 IncI1-Iγ plasmids carrying various extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase genes were compared using plasmid multilocus sequence typing (pMLST). Thirty-two of these plasmids belonging to different pMLST types were sequenced using Roche 454 and Illumina platforms. Epidemic IncI1-Iγ plasmids could be assigned to various dominant clades, whereas rarely detected plasmids clustered together as a distinct clade. Similar phylogenetic trees were obtained using only the plasmid backbone sequences, showing that the differences observed between the plasmids belonging to distinct clades resulted mainly from differences between their backbone sequences. Plasmids belonging to the various clades differed particularly in the presence/absence of genes encoding partitioning and addiction systems, which contribute to stable inheritance during cell division and plasmid maintenance. Despite this, plasmids belonging to the various phylogenetic clades also showed marked resistance gene associations, indicating the circulation of successful plasmid-gene combinations. The variation intraYandexcAgenes found in IncI1-Iγ plasmids is conserved within pMLST sequence types and plays a role in incompatibility, although functional study is needed to elucidate the role of these genes in plasmid epidemiology.


Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 3707-3718 ◽  
Author(s):  
J.B. Singer ◽  
R. Harbecke ◽  
T. Kusch ◽  
R. Reuter ◽  
J.A. Lengyel

Chromosomal region 68D/E is required for various aspects of Drosophila gut development; within this region maps the Brachyury homolog T-related gene (Trg), DNA of which rescues the hindgut defects of deficiency 68D/E. From a screen of 13,000 mutagenized chromosomes we identified six non-complementing alleles that are lethal over deficiencies of 68D/E and show a hindgut phenotype. These mutations constitute an allelic series and are all rescued to viability by a Trg transgene. We have named the mutant alleles and the genetic locus they define brachyenteron (byn); phenotypic characterization of the strongest alleles allows determination of the role of byn in embryogenesis. byn expression is activated by tailless, but byn does not regulate itself. byn expression in the hindgut and anal pad primordia is required for the regulation of genes encoding transcription factors (even-skipped, engrailed, caudal, AbdominalB and orthopedia) and cell signaling molecules (wingless and decapentaplegic). In byn mutant embryos, the defective program of gene activity in these primordia is followed by apoptosis (initiated by reaper expression and completed by macrophage engulfment), resulting in severely reduced hindgut and anal pads. Although byn is not expressed in the midgut or the Malpighian tubules, it is required for the formation of midgut constrictions and for the elongation of the Malpighian tubules.


2019 ◽  
Vol 61 (2) ◽  
pp. 381-392
Author(s):  
Irina Malinova ◽  
Stella Kössler ◽  
Tom Orawetz ◽  
Ulrike Matthes ◽  
Slawomir Orzechowski ◽  
...  

Abstract Primary carbohydrate metabolism in plants includes several sugar and sugar-derivative transport processes. Over recent years, evidences have shown that in starch-related transport processes, in addition to glucose 6-phosphate, maltose, glucose and triose-phosphates, glucose 1-phosphate also plays a role and thereby increases the possible fluxes of sugar metabolites in planta. In this study, we report the characterization of two highly similar transporters, At1g34020 and At4g09810, in Arabidopsis thaliana, which allow the import of glucose 1-phosphate through the plasma membrane. Both transporters were expressed in yeast and were biochemically analyzed to reveal an antiport of glucose 1-phosphate/phosphate. Furthermore, we showed that the apoplast of Arabidopsis leaves contained glucose 1-phosphate and that the corresponding mutant of these transporters had higher glucose 1-phosphate amounts in the apoplast and alterations in starch and starch-related metabolism.


2016 ◽  
Vol 63 (3) ◽  
Author(s):  
Thuy T. P. Doan ◽  
Anders S. Carlsson ◽  
Sten Stymne ◽  
Per Hofvander

Fatty alcohols and derivatives are important for proper deposition of a functional pollen wall. Mutations in specific genes encoding fatty acid reductases (FAR) responsible for fatty alcohol production cause abnormal development of pollen. A disrupted AtFAR2 (MS2) gene in Arabidopsis thaliana results in pollen developing an abnormal exine layer and a reduced fertility phenotype. AtFAR2 has been shown to be targeted to chloroplasts and in a purified form to be specific for acyl-ACP substrates. Here, we present data on the in vitro and in planta characterizations of AtFAR2 from A. thaliana and show that this enzyme has the ability to use both, C16:0-ACP and C16:0-CoA, as substrates to produce C16:0-alcohol. Our results further show that AtFAR2 is highly similar in properties and substrate specificity to AtFAR6 for which in vitro data has been published, and which is also a chloroplast localized enzyme. This suggests that although AtFAR2 is the major enzyme responsible for exine layer functionality, AtFAR6 might provide functional redundancy to AtFAR2.


2007 ◽  
Vol 65 (3) ◽  
pp. 343-355 ◽  
Author(s):  
Carolina V. Attallah ◽  
Elina Welchen ◽  
Claire Pujol ◽  
Geraldine Bonnard ◽  
Daniel H. Gonzalez

1990 ◽  
Vol 93 (3) ◽  
pp. 907-914 ◽  
Author(s):  
Deborah A. Samac ◽  
Cathy M. Hironaka ◽  
Peter E. Yallaly ◽  
Dilip M. Shah

2007 ◽  
Vol 189 (19) ◽  
pp. 7053-7061 ◽  
Author(s):  
Aurélie Delangle ◽  
Anne-France Prouvost ◽  
Virginie Cogez ◽  
Jean-Pierre Bohin ◽  
Jean-Marie Lacroix ◽  
...  

ABSTRACT β-1,4-Galactan is a major component of the ramified regions of pectin. Analysis of the genome of the plant pathogenic bacteria Erwinia chrysanthemi revealed the presence of a cluster of eight genes encoding proteins potentially involved in galactan utilization. The predicted transport system would comprise a specific porin GanL and an ABC transporter made of four proteins, GanFGK2. Degradation of galactans would be catalyzed by the periplasmic 1,4-β-endogalactanase GanA, which released oligogalactans from trimer to hexamer. After their transport through the inner membrane, oligogalactans would be degraded into galactose by the cytoplasmic 1,4-β-exogalactanase GanB. Mutants affected for the porin or endogalactanase were unable to grow on galactans, but they grew on galactose and on a mixture of galactotriose, galactotetraose, galactopentaose, and galactohexaose. Mutants affected for the periplasmic galactan binding protein, the transporter ATPase, or the exogalactanase were only able to grow on galactose. Thus, the phenotypes of these mutants confirmed the functionality of the gan locus in transport and catabolism of galactans. These mutations did not affect the virulence of E. chrysanthemi on chicory leaves, potato tubers, or Saintpaulia ionantha, suggesting an accessory role of galactan utilization in the bacterial pathogeny.


2019 ◽  
Author(s):  
Barbara A M Paffendorf ◽  
Rawan Qassrawi ◽  
Andrea M Meys ◽  
Laura Trimborn ◽  
Andrea Schrader

Pleiotropic regulatory factors mediate concerted responses of the plant’s trait network to endogenous and exogenous cues. TRANSPARENT TESTA GLABRA 1 (TTG1) is a pleiotropic regulator that has been predominantly described in its role as a regulator of early accessible developmental traits. Although its closest homologs LIGHT-REGULATED WD1 (LWD1) and LWD2 are regulators of photoperiodic flowering, a role of TTG1 in flowering time regulation has not been reported. Here we reveal that TTG1 is a regulator of flowering time in Arabidopsis thaliana and changes transcription levels of different targets within the flowering time regulatory pathway. TTG1 mutants flower early and TTG1 overexpression lines flower late at long-day conditions. Consistently, TTG1 can suppress the transcript levels of the floral integrators FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CO1 and can act as an activator of circadian clock components. Moreover, TTG1 might form feedback loops at the protein level. The TTG1 protein interacts with PSEUDO RESPONSE REGULATOR (PRR)s and basic HELIX-LOOP-HELIX 92 (bHLH92) in yeast. In planta, the respective pairs exhibit interesting patterns of localization including a recruitment of TTG1 by PRR5 to subnuclear foci. This mechanism proposes additional layers of regulation by TTG1 and might aid to specify the function of bHLH92. Within another branch of the pathway, TTG1 can elevate FLOWERING LOCUS C (FLC) transcript levels. FLC mediates signals from the vernalization, ambient temperature and autonomous pathway and the circadian clock is pivotal for the plant to synchronize with diurnal cycles of environmental stimuli like light and temperature. Our results suggest an unexpected positioning of TTG1 upstream of FLC and upstream of the circadian clock. In this light, this points to an adaptive value of the role of TTG1 in respect to flowering time regulation.


1995 ◽  
Author(s):  
Itzhak Ohad ◽  
Himadri Pakrasi

The aim of this research project was to obtain information on the role of the cytochrome b559 in the function of Photosystem-II (PSII) with special emphasis on the light induced photo inactivation of PSII and turnover of the photochemical reaction center II protein subunit RCII-D1. The major goals of this project were: 1) Isolation and sequencing of the Chlamydomonas chloroplast psbE and psbF genes encoding the cytochrome b559 a and b subunits respectively; 2) Generation of site directed mutants and testing the effect of such mutation on the function of PSII under various light conditions; 3) To obtain further information on the mechanism of the light induced degradation and replacement of the PSII core proteins. This information shall serve as a basis for the understanding of the role of the cytochrome b559 in the process of photoinhibition and recovery of photosynthetic activity as well as during low light induced turnover of the D1 protein. Unlike in other organisms in which the psbE and psbF genes encoding the a and b subunits of cytochrome b559, are part of an operon which also includes the psbL and psbJ genes, in Chlamydomonas these genes are transcribed from different regions of the chloroplast chromosome. The charge distribution of the derived amino-acid sequences of psbE and psbF gene products differs from that of the corresponding genes in other organisms as far as the rule of "positive charge in" is concerned relative to the process of the polypeptide insertion in the thylakoid membrane. However, the sum of the charges of both subunits corresponds to the above rule possibly indicating co-insertion of both subunits in the process of cytochrome b559 assembly. A plasmid designed for the introduction of site-specific mutations into the psbF gene of C. reinhardtii. was constructed. The vector consists of a DNA fragment from the chromosome of C. reinhardtii which spans the region of the psbF gene, upstream of which the spectinomycin-resistance-conferring aadA cassette was inserted. This vector was successfully used to transform wild type C. reinhardtii cells. The spectinomycin resistant strain thus obtained can grow autotrophically and does not show significant changes as compared to the wild-type strain in PSII activity. The following mutations have been introduced in the psbF gene: H23M; H23Y; W19L and W19. The replacement of H23 involved in the heme binding to M and Y was meant to permit heme binding but eventually alter some or all of the electron transport properties of the mutated cytochrome. Tryptophane W19, a strictly conserved residue, is proximal to the heme and may interact with the tetrapyrole ring. Therefore its replacement may effect the heme properties. A change to tyrosine may have a lesser affect on the potential or electron transfer rate while a replacement of W19 by leucine is meant to introduce a more prominent disturbance in these parameters. Two of the mutants, FW19L and FH23M have segregated already and are homoplasmic. The rest are still grown under selection conditions until complete segregation will be obtained. All mutants contain assembled and functional PSII exhibiting an increased sensitivity of PSII to the light. Work is still in progress for the detailed characterization of the mutants PSII properties. A tobacco mutant, S6, obtained by Maliga and coworkers harboring the F26S mutation in the b subunit was made available to us and was characterized. Measurements of PSII charge separation and recombination, polypeptide content and electron flow indicates that this mutation indeed results in light sensitivity. Presently further work is in progress in the detailed characterization of the properties of all the above mutants. Information was obtained demonstrating that photoinactivation of PSII in vivo initiates a series of progressive changes in the properties of RCII which result in an irreversible modification of the RCII-D1 protein leading to its degradation and replacement. The cleavage process of the modified RCII-D1 protein is regulated by the occupancy of the QB site of RCII by plastoquinone. Newly synthesized D1 protein is not accumulated in a stable form unless integrated in reassembled RCII. Thus the degradation of the irreversibly modified RCII-D1 protein is essential for the recovery process. The light induced degradation of the RCII-D1 protein is rapid in mutants lacking the pD1 processing protease such as in the LF-1 mutant of the unicellular alga Scenedesmus obliquus. In this case the Mn binding site of PSII is abolished, the water oxidation process is inhibited and harmful cation radicals are formed following light induced electron flow in PSII. In such mutants photo-inactivation of PSII is rapid, it is not protected by ligands binding at the QB site and the degradation of the inactivated RCII-D1 occurs rapidly also in the dark. Furthermore the degraded D1 protein can be replaced in the dark in absence of light driven redox controlled reactions. The replacement of the RCII-D1 protein involves the de novo synthesis of the precursor protein, pD1, and its processing at the C-terminus end by an unknown processing protease. In the frame of this work, a gene previously isolated and sequenced by Dr. Pakrasi's group has been identified as encoding the RCII-pD1 C-terminus processing protease in the cyanobacterium Synechocystis sp. PCC 6803. The deduced sequence of the ctpA protein shows significant similarity to the bovine, human and insect interphotoreceptor retinoid-binding proteins. Results obtained using C. reinhardtii cells exposes to low light or series of single turnover light flashes have been also obtained indicating that the process of RCII-D1 protein turnover under non-photoinactivating conditions (low light) may be related to charge recombination in RCII due to back electron flow from the semiquinone QB- to the oxidised S2,3 states of the Mn cluster involved in the water oxidation process.


Sign in / Sign up

Export Citation Format

Share Document