scholarly journals What is the Molecular Basis of Nonhost Resistance?

2020 ◽  
Vol 33 (11) ◽  
pp. 1253-1264
Author(s):  
Ralph Panstruga ◽  
Matthew J. Moscou

This article is part of the Top 10 Unanswered Questions in MPMI invited review series. Nonhost resistance is typically considered the ability of a plant species to repel all attempts of a pathogen species to colonize it and reproduce on it. Based on this common definition, nonhost resistance is presumed to be very durable and, thus, of great interest for its potential use in agriculture. Despite considerable research efforts, the molecular basis of this type of plant immunity remains nebulous. We here stress the fact that “nonhost resistance” is a phenomenological rather than a mechanistic concept that comprises more facets than typically considered. We further argue that nonhost resistance essentially relies on the very same genes and pathways as other types of plant immunity, of which some may act as bottlenecks for particular pathogens on a given plant species or under certain conditions. Thus, in our view, the frequently used term “nonhost genes” is misleading and should be avoided. Depending on the plant–pathogen combination, nonhost resistance may involve the recognition of pathogen effectors by host immune sensor proteins, which might give rise to host shifts or host range expansions due to evolutionary-conditioned gains and losses in respective armories. Thus, the extent of nonhost resistance also defines pathogen host ranges. In some instances, immune-related genes can be transferred across plant species to boost defense, resulting in augmented disease resistance. We discuss future routes for deepening our understanding of nonhost resistance and argue that the confusing term “nonhost resistance” should be used more cautiously in the light of a holistic view of plant immunity.

2017 ◽  
Vol 70 (2) ◽  
pp. 8225-8235 ◽  
Author(s):  
Kelly Ávila Méndez ◽  
Hernán Mauricio Romero

Pathogens attack plants to assimilate nutrients from them. All plant species have succeeded in overcoming pathogenic attack; therefore disease condition is not the rule but the exception. A co-evolutionary battle has equipped plants with sophisticated defense mechanisms and cognate pathogens with a corresponding arsenal of counter strategies to overcome them. Traditionally, plant-pathogen interaction has been associated with molecules involved in recognition processes giving rise to models such as the "Zig-zag Model". However, this model is being re-evaluated because it is not consistent with the complexity of the interaction. Current models propose a holistic view of a process where the response is not always determined by the interaction of two molecules. This review discusses the main aspects related to qualitative responses in the plant-pathogen interaction and the new proposed models.


2022 ◽  
Vol 12 ◽  
Author(s):  
Peiguo Yuan ◽  
Kiwamu Tanaka ◽  
B. W. Poovaiah

Calcium (Ca2+) signaling in plant cells is an essential and early event during plant-microbe interactions. The recognition of microbe-derived molecules activates Ca2+ channels or Ca2+ pumps that trigger a transient increase in Ca2+ in the cytoplasm. The Ca2+ binding proteins (such as CBL, CPK, CaM, and CML), known as Ca2+ sensors, relay the Ca2+ signal into down-stream signaling events, e.g., activating transcription factors in the nucleus. For example, CaM and CML decode the Ca2+ signals to the CaM/CML-binding protein, especially CaM-binding transcription factors (AtSRs/CAMTAs), to induce the expressions of immune-related genes. In this review, we discuss the recent breakthroughs in down-stream Ca2+ signaling as a dynamic process, subjected to continuous variation and gradual change. AtSR1/CAMTA3 is a CaM-mediated transcription factor that represses plant immunity in non-stressful environments. Stress-triggered Ca2+ spikes impact the Ca2+-CaM-AtSR1 complex to control plant immune response. We also discuss other regulatory mechanisms in which Ca2+ signaling activates CPKs and MAPKs cascades followed by regulating the function of AtSR1 by changing its stability, phosphorylation status, and subcellular localization during plant defense.


2019 ◽  
Vol 57 (1) ◽  
pp. 367-386 ◽  
Author(s):  
Michael F. Seidl ◽  
Guido Van den Ackerveken

Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) have an extremely broad taxonomic distribution; they occur in bacteria, fungi, and oomycetes. NLPs come in two forms, those that are cytotoxic to eudicot plants and those that are noncytotoxic. Cytotoxic NLPs bind to glycosyl inositol phosphoryl ceramide (GIPC) sphingolipids that are abundant in the outer leaflet of plant plasma membranes. Binding allows the NLP to become cytolytic in eudicots but not monocots. The function of noncytotoxic NLPs remains enigmatic, but the expansion of NLP genes in oomycete genomes suggests they are important. Several plant species have evolved the capacity to recognize NLPs as molecular patterns and trigger plant immunity, e.g., Arabidopsis thaliana detects nlp peptides via the receptor-like protein RLP23. In this review, we provide a historical perspective from discovery to understanding of molecular mechanisms and describe the latest developments in the NLP field to shed light on these fascinating microbial proteins.


2020 ◽  
Vol 21 (16) ◽  
pp. 5926
Author(s):  
Wei Dong ◽  
Yuguang Song

Nitrogen is essential for the growth of plants. The ability of some plant species to obtain all or part of their requirement for nitrogen by interacting with microbial symbionts has conferred a major competitive advantage over those plants unable to do so. The function of certain flavonoids (a group of secondary metabolites produced by the plant phenylpropanoid pathway) within the process of biological nitrogen fixation carried out by Rhizobium spp. has been thoroughly researched. However, their significance to biological nitrogen fixation carried out during the actinorhizal and arbuscular mycorrhiza–Rhizobium–legume interaction remains unclear. This review catalogs and contextualizes the role of flavonoids in the three major types of root endosymbiosis responsible for biological nitrogen fixation. The importance of gaining an understanding of the molecular basis of endosymbiosis signaling, as well as the potential of and challenges facing modifying flavonoids either quantitatively and/or qualitatively are discussed, along with proposed strategies for both optimizing the process of nodulation and widening the plant species base, which can support nodulation.


2019 ◽  
Vol 32 (12) ◽  
pp. 1598-1613 ◽  
Author(s):  
Urooj Fatima ◽  
Priyadarshini Bhorali ◽  
Muthappa Senthil-Kumar

Alternaria blight, caused by Alternaria brassicae, causes considerable yield loss in Brassica crops. While several blight-resistant varieties have been developed using resistance sources from host germplasm, none of them are entirely successful in imparting durable resistance. This has prompted the exploration of novel gene pools of nonhost plant species. Nonhost resistance (NHR) is a durable form of resistance, comprising pre- and postinvasion layers of defense. We aimed to identify the molecular basis of NHR to A. brassicae and identify the layers of NHR operating in a nonhost, chickpea (Cicer arietinum). To elucidate the layers of NHR operating against A. brassicae, we compared the histopathology and infection patterns of A. brassicae in C. arietinum and Brassica juncea. Delayed conidial germination, impeded hyphal growth, suppressed appressorium formation, and limited hyphal penetration occurred in the nonhost plant compared with the host plant, implying the involvement of the preinvasion layer of NHR in C. arietinum. Next, we investigated the molecular basis of robust NHR, in C. arietinum challenged with A. brassicae, by microarray-based global transcriptome profiling. Genes involved in stomatal closure, cuticular wax biosynthesis, cell-wall modification, and secondary metabolite production (contributing to preinvasion NHR) as well as reactive oxygen species (ROS) and cell death (contributing to postinvasion NHR) were found to be upregulated. Consistent with transcriptomic analysis, the morpho-pathological analysis revealed stomatal closure, ROS accumulation, and localized cell death in C. arietinum as the defense strategies against A. brassicae. Thus, we identified NHR-contributing genes with potential applications in blight resistance gene transfer to B. juncea.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Meiping Zhang ◽  
Yun-Hua Liu ◽  
Wenwei Xu ◽  
C. Wayne Smith ◽  
Seth C. Murray ◽  
...  

2015 ◽  
Vol 21 (12) ◽  
pp. 1441-1454 ◽  
Author(s):  
Jian Zhang ◽  
Scott E. Nielsen ◽  
Jessica Stolar ◽  
Youhua Chen ◽  
Wilfried Thuiller

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1122
Author(s):  
Catherine Gough ◽  
Ari Sadanandom

Plants are constantly threatened by pathogens, so have evolved complex defence signalling networks to overcome pathogen attacks. Post-translational modifications (PTMs) are fundamental to plant immunity, allowing rapid and dynamic responses at the appropriate time. PTM regulation is essential; pathogen effectors often disrupt PTMs in an attempt to evade immune responses. Here, we cover the mechanisms of disease resistance to pathogens, and how growth is balanced with defence, with a focus on the essential roles of PTMs. Alteration of defence-related PTMs has the potential to fine-tune molecular interactions to produce disease-resistant crops, without trade-offs in growth and fitness.


Author(s):  
Valentyna Klymiuk ◽  
Gitta Coaker ◽  
Tzion Fahima ◽  
Curtis Pozniak

Plant-pathogen interactions result in disease development in a susceptible host. Plants actively resist pathogens via a complex immune system comprised of both surface-localized receptors that sense the extracellular space as well as intracellular receptors recognizing pathogen effectors. To date, the majority of cloned resistance genes encode intracellular nucleotide-binding leucine-rich repeat (NLR) receptor proteins. Recent discoveries have revealed Tandem Kinase Proteins (TKPs) as another important family of intracellular proteins involved in plant immune responses. Five TKP genes, barley Rpg1 and wheat WTK1 (Yr15), WTK2 (Sr60), WTK3 (Pm24), and WTK4 protect against devastating fungal diseases. Moreover, a large diversity and numerous putative TKPs exist across the plant kingdom. This review explores our current knowledge of TKPs and serves as a basis for future studies that aim to develop and exploit a deeper understanding of innate plant immunity receptor proteins.


2015 ◽  
Vol 28 (5) ◽  
pp. 511-518 ◽  
Author(s):  
Rosa Lozano-Durán ◽  
Silke Robatzek

14-3-3 proteins define a eukaryotic-specific protein family with a general role in signal transduction. Primarily, 14-3-3 proteins act as phosphosensors, binding phosphorylated client proteins and modulating their functions. Since phosphorylation regulates a plethora of different physiological responses in plants, 14-3-3 proteins play roles in multiple signaling pathways, including those controlling metabolism, hormone signaling, cell division, and responses to abiotic and biotic stimuli. Increasing evidence supports a prominent role of 14-3-3 proteins in regulating plant immunity against pathogens at various levels. In this review, potential links between 14-3-3 function and the regulation of plant-pathogen interactions are discussed, with a special focus on the regulation of 14-3-3 proteins in response to pathogen perception, interactions between 14-3-3 proteins and defense-related proteins, and 14-3-3 proteins as targets of pathogen effectors.


Sign in / Sign up

Export Citation Format

Share Document