scholarly journals Iron Acquisition from Fe-Pyoverdine by Arabidopsis thaliana

2007 ◽  
Vol 20 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Gérard Vansuyt ◽  
Agnès Robin ◽  
Jean-François Briat ◽  
Catherine Curie ◽  
Philippe Lemanceau

Taking into account the strong iron competition in the rhizosphere and the high affinity of pyoverdines for Fe(III), these molecules are expected to interfere with the iron nutrition of plants, as they do with rhizospheric microbes. The impact of Fe-pyoverdine on iron content of Arabidopsis thaliana was compared with that of Fe-EDTA. Iron chelated to pyoverdine was incorporated in a more efficient way than when chelated to EDTA, leading to increased plant growth of the wild type. A transgenic line of A. thaliana overexpressing ferritin showed a higher iron content than the wild type when supplemented with Fe-EDTA but a lower iron content when supplemented with Fe-pyoverdine despite its increased reductase activity, suggesting that this activity was not involved in the iron uptake from pyoverdine. A mutant knockout iron transporter IRT1 showed lower iron and chlorophyll contents when supplemented with Fe-EDTA than the wild type but not when supplemented with Fe-pyoverdine, indicating that, in contrast to iron from EDTA, iron from pyoverdine was not incorporated through the IRT1 transporter. Altogether these data suggest that iron from Fe-pyoverdine was not incorporated in planta through the strategy I, which is based on reductase activity and IRT1 transporter. This is supported by the presence of pyoverdine in planta as shown by enzyme-linked immunosorbent assay and by tracing 15N of 15N-pyoverdine.

2018 ◽  
Vol 26 ◽  
pp. 170-178 ◽  
Author(s):  
Tahereh Jafari ◽  
Moona Rahikainen ◽  
Elina Puljula ◽  
Jari Sinkkonen ◽  
Saijaliisa Kangasjärvi

2020 ◽  
Vol 8 (5) ◽  
pp. 630
Author(s):  
Vanesa García ◽  
Ana Herrero-Fresno ◽  
Rosaura Rodicio ◽  
Alfonso Felipe-López ◽  
Ignacio Montero ◽  
...  

The resistance plasmid pUO-StVR2, derived from virulence plasmid pSLT, is widespread in clinical isolates of Salmonella enterica serovar Typhimurium recovered in Spain and other European countries. pUO-StVR2 carries several genes encoding a FetMP-Fls system, which could be involved in iron uptake. We therefore analyzed S. Typhimurium LSP 146/02, a clinical strain selected as representative of the isolates carrying the plasmid, and an otherwise isogenic mutant lacking four genes (fetMP-flsDA) of the fetMP-fls region. Growth curves and determination of the intracellular iron content under iron-restricted conditions demonstrated that deletion of these genes impairs iron acquisition. Thus, under these conditions, the mutant grew significantly worse than the wild-type strain, its iron content was significantly lower, and it was outcompeted by the wild-type strain in competition assays. Importantly, the strain lacking the fetMP-flsDA genes was less invasive in cultured epithelial HeLa cells and replicated poorly upon infection of RAW264.7 macrophages. The genes were introduced into S. Typhimurium ATCC 14028, which lacks the FetMP-Fls system, and this resulted in increased growth under iron limitation as well as an increased ability to multiply inside macrophages. These findings indicate that the FetMP-Fls iron acquisition system exceeds the benefits conferred by the other high-affinity iron uptake systems carried by ATCC 14028 and LSP 146/02. We proposed that effective iron acquisition by this system in conjunction with antimicrobial resistance encoded from the same plasmid have greatly contributed to the epidemic success of S. Typhimurium isolates harboring pUO-StVR2.


Botany ◽  
2011 ◽  
Vol 89 (10) ◽  
pp. 731-735 ◽  
Author(s):  
Matt Shirley ◽  
Laure Avoscan ◽  
Eric Bernaud ◽  
Gérard Vansuyt ◽  
Philippe Lemanceau

Iron is an essential micronutrient for plants and associated microorganisms. However, the bioavailability of iron in cultivated soils is low. Plants and microorganisms have thus evolved active strategies of iron uptake. Two different iron uptake strategies have been described in dicotyledonous and monocotyledonous graminaceous species. In bacteria, this strategy relies on the synthesis of siderophores. Pyoverdines, a major class of siderophores produced by fluorescent pseudomonads, were previously shown to promote iron nutrition of the dicotyledonous species Arabidopsis thaliana L. (Heynh.), whereas contradictory reports were made on the contribution of those siderophores to the nutrition of graminaceous annuals. Furthermore, no information has so far been available on graminaceous perennials. Here, the contribution of purified pyoverdine of Pseudomonas fluorescens C7R12 to the iron nutrition of two annual and perennial graminaceous plants was assessed and compared with that of two dicotyledonous plant species. Fe–Pyoverdine promoted the iron status of all plant species tested. With the exception of wheat, this promotion was more dramatic in graminaceous species than in dicotyledonous species and was the highest in fescue, a perennial species. The incorporation of 15N-labeled pyoverdine was consistent with the effect on the iron status of the plants tested.


2020 ◽  
Vol 21 (7) ◽  
pp. 2567 ◽  
Author(s):  
Antje Walter ◽  
Lorenzo Caputi ◽  
Sarah O’Connor ◽  
Karl-Heinz van Pée ◽  
Jutta Ludwig-Müller

Plant hormones have various functions in plants and play crucial roles in all developmental and differentiation stages. Auxins constitute one of the most important groups with the major representative indole-3-acetic acid (IAA). A halogenated derivate of IAA, 4-chloro-indole-3-acetic acid (4-Cl-IAA), has previously been identified in Pisum sativum and other legumes. While the enzymes responsible for the halogenation of compounds in bacteria and fungi are well studied, the metabolic pathways leading to the production of 4-Cl-IAA in plants, especially the halogenating reaction, are still unknown. Therefore, bacterial flavin-dependent tryptophan-halogenase genes were transformed into the model organism Arabidopsis thaliana. The type of chlorinated indole derivatives that could be expected was determined by incubating wild type A. thaliana with different Cl-tryptophan derivatives. We showed that, in addition to chlorinated IAA, chlorinated IAA conjugates were synthesized. Concomitantly, we found that an auxin conjugate synthetase (GH3.3 protein) from A. thaliana was able to convert chlorinated IAAs to amino acid conjugates in vitro. In addition, we showed that the production of halogenated tryptophan (Trp), indole-3-acetonitrile (IAN) and IAA is possible in transgenic A. thaliana in planta with the help of the bacterial halogenating enzymes. Furthermore, it was investigated if there is an effect (i) of exogenously applied Cl-IAA and Cl-Trp and (ii) of endogenously chlorinated substances on the growth phenotype of the plants.


2020 ◽  
Vol 23 (10) ◽  
pp. 688-696
Author(s):  
Elika Esmaeilzadeh-Gharehdaghi ◽  
Ehsan Razmara ◽  
Amirreza Bitaraf ◽  
Ahmadreza Jamshidi ◽  
Mahdi Mahmoudi ◽  
...  

Background: Ankylosing spondylitis (AS; OMIM:106300) is a common complex inflammatory disease; in a previous study, we introduced a novel mutation in the RELN gene (OMIM: 600514) which was associated with AS. This study is designed to investigate the potential effect of RELN S2486G mutation on reelin secretion; additionally, we objected to evaluate the phospholipase A2 (PLA2G7) gene (OMIM: 601690) expression and platelet-activating factor-acetylhydrolase (PAF-AH) concentration as the downstream gene and the encoded protein. Methods: The impact of the S2486G on reelin protein secretion was investigated in CHO-K1 and HEK-293T cells by constructing wild-type and mutant plasmids. Besides, the possible effect of the mutation on expression and concentration of PLA2G7 and PAF-AH in THP1 cells was assessed by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The study was performed at Tarbiat Modares University, Tehran, Iran, from 2016 to 2018. Results: Our results showed that S2486G not only causes a significant reduction in reelin secretion in both HEK-293T and CHO-K1 cells, but also it leads to a significant reduction in PLA2G7 gene expression (P value < 0.001) and protein level of PAF-AH in THP-1 cells (P value < 0.003). Conclusion: The S2486G mutation in RELN can alter inflammatory and, to some extent, osteogenesis pathways mediated by reduced secretion of reelin and also reduced expression of the PLA2G7 gene.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1876-1876
Author(s):  
Maria Franca Marongiu ◽  
Kristen Muirhead ◽  
Sara Gardenghi ◽  
Ella Guy ◽  
Stefano Rivella ◽  
...  

Abstract Patients with β-thalassemia hyper absorb dietary iron, most of which is stored in the liver. They also suffer from ineffective erythropoiesis (IE) which leads to hepatosplenomegaly, often requiring a splenectomy. We have been conducting a series of studies utilizing the th3/+ mouse model of thalassemia intermedia to investigate the absorption, distribution and erythroid utilization of iron. Here we focus on changes in the iron content of liver and spleen resulting from diets containing low (2.5 ppm), sufficient (35 ppm) and high (200 ppm) levels of iron, and assess the impact of splenectomy on its distribution. The high iron diet was standard rodent chow while the others were defined diets. Th3/+ mice were either bred or generated by transplantation of th3/+ hematopoietic stem cells from E14.5 fetal livers into lethally irradiated wild type (+/+) recipients. Wild type controls were similarly obtained. Splenectomy of bred and recipient mice was performed at 5 weeks of age and bone marrow transplantation (BMT) at 8 weeks. Non-transplanted mice were placed on the test diets at 8 weeks of age, and transplanted mice at 11 weeks. All animals were sacrificed after 4 weeks on the test diets, and livers and spleens harvested for determination of their iron content by atomic absorption. Group sizes ranged from 3 to 10 mice (median 7). In general, the mean organ iron content of mice fed the high iron diet was not significantly different from that of the animals fed the iron sufficient diet, while those fed the low iron diet had reduced levels of tissue iron. Over the course of the 4-week feeding study, the iron content of the livers and spleens of +/+ mice fed the 35-ppm diet increased 39% and 202%, respectively, while the corresponding values of those fed the 2.5-ppm diet were −21% and 30%. The changes in the liver and spleen of th3/+ mice were 79% and 32% (35-ppm diet) and 14% and 12% (2.5-ppm diet) compared to the values at baseline. The latter values, those at 8 weeks of age, were 1.8- and 30-fold higher in the th3/+ mice, the massive accumulation of iron in the spleen undoubtedly resulting from IE. Where iron intake (liver plus spleen) was low, it went preferentially to the spleen, undoubtedly to sustain erythropoiesis. Groups of splenectomized +/+ mice were also fed the three diets for 4 weeks. The mean iron content of their livers was similar to that of non-splenectomized animals. Similar studies of th3/+ mice are now in progress. A second set of studies is being conducted in transplanted +/+ and th3/+ mice, the goal being to determine whether or not the absorption and distribution of iron is the same as in bred animals. Again, the organ iron content of those mice fed the high iron diet was similar to that of the animals fed the iron sufficient diet. In the case of the transplanted +/+ animals fed iron sufficient diets, the mean iron contents of the livers and spleens were 64% and 186% increased after 4 weeks of feeding, values not markedly different from those of bred animals. The corresponding values on the 2.5-ppm diet were 27% and 72%, again the pattern being similar. The transplanted th3/+ animals accumulated significantly less iron in these organs than those that were bred. However, the rate at which they accumulated this iron was 10 to 20 times higher than that of the other groups studied, including the transplanted +/+ mice, perhaps reflecting a synergistic effect of BMT and IE on iron absorption. Mice fed the 35-ppm diet had only 75% and 46% as much iron in their livers and spleens, the animals fed the 2.5-ppm diet having even less (35% and 23%) while again showing preferential diversion of iron to the spleen. Splenectomizing the animals resulted in further increasing the liver iron, more that 2.5-fold in those fed the low iron diet. The hemoglobin levels of all the mice evaluated were unchanged as a result of the dietary studies, except for a 20% decrease seen in bred +/+ mice fed the low iron diet. We are currently studying splenectomized transplanted th3/+ mice as well as doing feeding studies of 5-months duration. In summary, a low iron diet has a marked effect on the iron levels of liver and spleen, which are accentuated under conditions of IE. Secondly, more iron is absorbed under conditions of IE than is needed for erythropoiesis, the excess being shuttled to the liver for storage.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 501
Author(s):  
Younès Dellero ◽  
Caroline Mauve ◽  
Mathieu Jossier ◽  
Michael Hodges

Photorespiration is a metabolic process that removes toxic 2-phosphoglycolate produced by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. It is essential for plant growth under ambient air, and it can play an important role under stress conditions that reduce CO2 entry into the leaf thus enhancing photorespiration. The aim of the study was to determine the impact of photorespiration on Arabidopsis thaliana leaf amino acid metabolism under low atmospheric CO2 concentrations. To achieve this, wild-type plants and photorespiratory glycolate oxidase (gox) mutants were given either short-term (4 h) or long-term (1 to 8 d) low atmospheric CO2 concentration treatments and leaf amino acid levels were measured and analyzed. Low CO2 treatments rapidly decreased net CO2 assimilation rate and triggered a broad reconfiguration of soluble amino acids. The most significant changes involved photorespiratory Gly and Ser, aromatic and branched-chain amino acids as well as Ala, Asp, Asn, Arg, GABA and homoSer. While the Gly/Ser ratio increased in all Arabidopsis lines between air and low CO2 conditions, low CO2 conditions led to a higher increase in both Gly and Ser contents in gox1 and gox2.2 mutants when compared to wild-type and gox2.1 plants. Results are discussed with respect to potential limiting enzymatic steps with a special emphasis on photorespiratory aminotransferase activities and the complexity of photorespiration.


2009 ◽  
Vol 191 (9) ◽  
pp. 3132-3141 ◽  
Author(s):  
Eve M. Mellgren ◽  
Andrew P. Kloek ◽  
Barbara N. Kunkel

ABSTRACT Plant pathogenic bacteria, such as Pseudomonas syringae pv. tomato strain DC3000, the causative agent of tomato bacterial speck disease, grow to high levels in the apoplastic space between plant cells. Colonization of plant tissue requires expression of virulence factors that modify the apoplast to make it more suitable for pathogen growth or facilitate adaptation of the bacteria to the apoplastic environment. To identify new virulence factors involved in these processes, DC3000 Tn5 transposon insertion mutants with reduced virulence on Arabidopsis thaliana were identified. In one of these mutants, the Tn5 insertion disrupted the malate:quinone oxidoreductase gene (mqo), which encodes an enzyme of the tricarboxylic acid cycle. mqo mutants do not grow to wild-type levels in plant tissue at early time points during infection. Further, plants infected with mqo mutants develop significantly reduced disease symptoms, even when the growth of the mqo mutant reaches wild-type levels at late stages of infection. Mutants lacking mqo function grow more slowly in culture than wild-type bacteria when dicarboxylates are the only available carbon source. To explore whether dicarboxylates are important for growth of DC3000 in the apoplast, we disrupted the dctA1 dicarboxylate transporter gene. DC3000 mutants lacking dctA1 do not grow to wild-type levels in planta, indicating that transport and utilization of dicarboxylates are important for virulence of DC3000. Thus, mqo may be required by DC3000 to meet nutritional requirements in the apoplast and may provide insight into the mechanisms underlying the important, but poorly understood process of adaptation to the host environment.


2005 ◽  
Vol 60 (3-4) ◽  
pp. 272-278 ◽  
Author(s):  
Mami Kurumata ◽  
Misa Takahashi ◽  
Atsushi Sakamoto ◽  
Juan L. Ramos ◽  
Ales Nepovim ◽  
...  

Abstract Arabidopsis thaliana was transformed with a gene encoding a nitroreductase (NTR, E.C. 1.6.99.7) with activity against a wide range of nitroaromatic compounds. The gene was transferred from Escherichia coli by an Agrobacterium-mediated in planta method. The ob­tained seeds were sowed to produce T1 plants, and they were assayed for the integration of the transgene in the plant genome. Transgenic plants that were positive with the PCR analysis were self-pollinated to produce T2 generation plants. Seven lines obtained were assayed for the NTR activity. While the noil-transformed wild-type plants showed no detectable NTR activity, the enzyme activity of the transgenic plant lines was approx. 20 times higher. Using the line with the highest NTR activity, the phytoremediation characteristics of plants against 2,4,6-trinitrotoluene (TNT) was investigated. While the wild-type plants did not grow in the presence of 0.1 mᴍ TNT, the transgenic plants grew almost normally in this condition. The uptake of TNT by seedlings of transgenic plants increased by 7 to 8 times when they were floated on TNT solution. HPLC analysis showed that the peak due to TNT taken up into plant body was much smaller in the transgenic plants as compared with that of the wild type, and that a number of peaks attributable to the degradation products of TNT, including 4-amino-2,6-dinitrotoluene, were detected in the extract from the transgenic plants. This indi­cates that the expression of bacterial NTR improved the capability of plants to degrade TNT.


2016 ◽  
Vol 13 (2) ◽  
Author(s):  
Zabrina Ebert ◽  
Preston Jacob ◽  
Katrina Jose ◽  
Lina Fouad ◽  
Katherine Vercellino ◽  
...  

Pseudomonas syringae pv. tomato strain DC3000 (DC3000) is a gram-negative bacterial plant pathogen that causes disease on tomato and the model plant Arabidopsis thaliana. Interestingly, previous studies showed that malate:quinone oxidoreductase (Mqo), an enzyme in the citric acid cycle, is required for DC3000 to cause disease on these plants. In addition, growth of DC3000 lacking the mqo gene in minimal medium with malate was significantly delayed, but eventually reached wild-type levels of growth, which is similar to growth in planta. This suggests that malate may be an important carbon source for DC3000. One reason the mqo::KO bacteria may be able to reach wild-type levels of growth in culture and plants is that the DC3000 malic enzyme may be used to complete the citric acid cycle. Our research shows that a mutant strain lacking a functional mqo gene and malic enzyme gene (mqo::KO;ME::pJP) fails to grow in minimal media cultures with malate and has reduced growth in media with citrate, indicating that both Mqo and ME are required for normal growth when utilizing these carbon sources. Future studies looking at growth of this double mutant in plants will identify how important the activities of both of these genes are for DC3000 to cause disease in plants. KEY WORDS: Malate:quinone Oxidoreductase; Malic Enzyme; MQO; Pseudomonas syringae; Arabidopsis thaliana; Malate; Citrate; DC3000


Sign in / Sign up

Export Citation Format

Share Document