scholarly journals Root-Knot Nematode Resistance in Pearl Millet From West and East Africa

Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 339-344 ◽  
Author(s):  
P. Timper ◽  
J. P. Wilson

Resistance to Meloidogyne incognita is important to provide stability to pearl millet production and to reduce nematode populations that can damage crops grown in rotation with pearl millet. The objectives of this study were to determine whether resistance to M. incognita exists in pearl millet from West and East Africa, and to determine if heterogeneity for resistance exists within selected cultivars. Resistance was assessed as nematode egg production per gram of root in greenhouse trials. Seventeen pearl millet cultivars of diverse origin were evaluated as bulk (S0) populations. All African cultivars expressed some level of resistance. P3Kollo was among the least resistant of the African cultivars, Zongo and Gwagwa were intermediate, and SoSat-C88 was among the most resistant. Thirty selfed (S1) progeny selections from SoSat-C88, Gwagwa, Zongo, and P3Kollo were evaluated for heterogeneity of resistance within cultivar. Reactions were verified in 13 S2 progeny of each of the four cultivars. In S1 evaluations, each of these cultivars was heterogeneous for resistance. Progeny reaction varied from highly resistant to highly susceptible. Patterns of apparent segregation of resistance varied among the four cultivars. Discreet resistant and susceptible phenotypes were identified in Zongo progeny, and it was estimated that two dominant genes for resistance segregated in this cultivar. Averaged across progenies, egg production on the four cultivars was less (P ≤ 0.001) than on the susceptible hybrid HGM-100, but was not different from resistant hybrid TifGrain 102. Reproduction of M. incognita on the S2 progeny tended to confirm the results from inoculations of S1 progeny. Heritability of nematode reproduction (standardized as the ratio of the value to HGM-100) determined by parent-offspring regression was 0.54. Realized heritability determined by divergent selection was 0.87.

2022 ◽  
Vol 12 ◽  
Author(s):  
Carolina Ballén-Taborda ◽  
Ye Chu ◽  
Peggy Ozias-Akins ◽  
C. Corley Holbrook ◽  
Patricia Timper ◽  
...  

Crop wild species are increasingly important for crop improvement. Peanut (Arachis hypogaea L.) wild relatives comprise a diverse genetic pool that is being used to broaden its narrow genetic base. Peanut is an allotetraploid species extremely susceptible to peanut root-knot nematode (PRKN) Meloidogyne arenaria. Current resistant cultivars rely on a single introgression for PRKN resistance incorporated from the wild relative Arachis cardenasii, which could be overcome as a result of the emergence of virulent nematode populations. Therefore, new sources of resistance may be needed. Near-immunity has been found in the peanut wild relative Arachis stenosperma. The two loci controlling the resistance, present on chromosomes A02 and A09, have been validated in tetraploid lines and have been shown to reduce nematode reproduction by up to 98%. To incorporate these new resistance QTL into cultivated peanut, we used a marker-assisted backcrossing approach, using PRKN A. stenosperma-derived resistant lines as donor parents. Four cycles of backcrossing were completed, and SNP assays linked to the QTL were used for foreground selection. In each backcross generation seed weight, length, and width were measured, and based on a statistical analysis we observed that only one generation of backcrossing was required to recover the elite peanut’s seed size. A populating of 271 BC3F1 lines was genome-wide genotyped to characterize the introgressions across the genome. Phenotypic information for leaf spot incidence and domestication traits (seed size, fertility, plant architecture, and flower color) were recorded. Correlations between the wild introgressions in different chromosomes and the phenotypic data allowed us to identify candidate regions controlling these domestication traits. Finally, PRKN resistance was validated in BC3F3 lines. We observed that the QTL in A02 and/or large introgression in A09 are needed for resistance. This present work represents an important step toward the development of new high-yielding and nematode-resistant peanut cultivars.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 1013-1016 ◽  
Author(s):  
Eduard Alcañiz ◽  
Jorge Pinochet ◽  
Carolina Fernández ◽  
Daniel Esmenjaud ◽  
Antonio Felipe

Fourteen Prunus rootstocks were evaluated against mixtures of several isolates of the root-lesion nematode Pratylenchus vulnus Allen and Jensen in three greenhouse experiments. Most of the tested rootstocks are new releases or materials in advanced stages of selection that also have incorporated root-knot nematode resistance. The plums Torinel (Prunusdomestica L.) and Redglow (P. salicina Lindl. P. munsoniana Wight and Hedrick cv. Jewel) showed a moderately resistant response; their final nematode population levels were lower or slightly higher than inoculation levels. Low nematode reproduction also was found in the peach–almond hybrid G N No 22 [P. persica (L.) Batsch P. dulcis (Mill.) D.A. Webb] and the plum Bruce (P. salicina P. angustifolia Marsh.), and although these rootstocks did not perform as well as Torinel and Redglow, they also appear to be poor hosts for P. vulnus.


HortScience ◽  
1994 ◽  
Vol 29 (6) ◽  
pp. 678-679 ◽  
Author(s):  
Richard L. Fery ◽  
Philip D. Dukes ◽  
Judy A. Thies

A series of greenhouse and field studies was conducted over 9 years to characterize three new sources of resistance in cowpea [Vigna unguiculata (L.) Walp.] to the southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] and to determine if the resistances are conditioned by genes allelic to the Rk root-knot nematode resistance gene in `Mississippi Silver'. Three plant introductions (PI), PI 441917, PI 441920, and PI 468104, were evaluated for reaction to M. incognita in four greenhouse tests, and in every test each PI exhibited less galling, egg mass formation, or egg production than `Mississippi Silver'. F2 populations of the crosses between `Mississippi Silver' and each of the three resistant PIs were also evaluated for root-knot nematode resistance in a greenhouse test. None of the F2 populations segregated for resistance, indicating that PI 441917, PI 441920, and PI 468104 each has a gene conditioning resistance that is allelic to the Rk gene in `Mississippi Silver'. Our observations on the superior levels of resistances exhibited by PI 441917, PI 441920, and PI 468104 suggest that the allele at the Rk locus in these lines may not be the Rk allele, but one or more alleles that condition a superior, dominant-type resistance. The availability of additional dominant alleles would broaden the genetic base for root-knot nematode resistance in cowpea.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 394A-394
Author(s):  
Peter Cousins ◽  
M. Andrew Walker

The grape Vitis champinii Planchon is one source of nematode resistance in grape rootstocks. Several selections valued for their resistance to the root-knot nematode (Meloidogyne incognita), a serious pest of grape production, are used as rootstocks and in rootstock variety development. However, V. champinii-based rootstock varieties are faulted for their excess vigor and susceptibility to other root pests. Root-knot nematode populations with the ability to damage important V. champinii-based rootstocks have been identified and may become more common. Other V. champinii accessions might be sources of nematode resistance genes with different specificities or might have more suitable horticultural characteristics than V. champinii varieties in commercial use. Nine V. champinii accessions from the National Clonal Germplasm Repository, Davis, Calif., and a V. champinii rootstock variety were screened for resistance to M. incognita. Resistance was assessed by counting eggs produced per root system. Eight of ten V. champinii accessions did not support nematode reproduction. Susceptible accessions supported lower nematode reproduction than susceptible V. vinifera control varieties. Progeny testing from crosses of resistant and susceptible accessions suggests that a dominant and a recessive gene may condition root-knot nematode resistance.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 520A-520
Author(s):  
J. A. Thies ◽  
A. Levi

Root-knot nematodes (Meloidogyne incognita, M. arenaria, and M. javanica) cause severe damage to watermelon and resistance has not been identified in any watermelon cultivar. In greenhouse tests, we evaluated 265 U.S. plant introductions (PIs) for nematode resistance (based on root galling and nematode reproduction), and identified 22 PIs of Citrullus lanatus var. citroides as moderately resistant to M. arenaria race 1. In subsequent tests, these 22 PIs exhibited low to moderate resistance to M. incognita race 3 and M. arenaria race 2. Three watermelon (C. lanatus var. lanatus) cultivars (Charleston Gray, Crimson Sweet, and Dixie Lee), three C. colocynthis PIs, and four C. lanatus var. citroides PIs, all previously shown to be susceptible to M. arenaria race 1, were susceptible to M. incognita race 3 and M. arenaria race 2. The C. lanatus var. citroides PIs that are most resistant to both M. incognita and M. arenaria should be useful sources of resistance for developing root-knot nematode resistant watermelon cultivars.


2007 ◽  
Vol 8 (1) ◽  
pp. 27 ◽  
Author(s):  
Patricia Timper ◽  
Timothy B. Brenneman ◽  
Jeffrey P. Wilson

In the southeastern United States, there are limited options for crops that can be grown in rotation with peanut (Arachis hypogaea). Pearl millet (Pennisetum glaucum) has potential as a grain crop, and some hybrids have shown resistance to the peanut root-knot nematode (Meloidogyne arenaria), the primary nematode pest of peanut in this region. The objective of this study was to determine whether pearl millet reduces M. arenaria when planted in rotation with peanut. The experiment was arranged as a randomized, complete-block design with six replications. The rotations were peanut following either 2 years of corn, HGM-100 pearl millet, or TifGrain 102 pearl millet. There were two staggered sequences of each rotation so that a cycle was completed in 2004 and in 2005. Pearl millet did not increase either stem rot or Rhizoctonia limb rot in peanut. In both years, root galling from M. arenaria was lower on peanut following TifGrain 102 (4.6 on a scale of 0 to 10) and corn (4.9) than following HGM-100 (7.5). Peanut yields in 2004 were low and unaffected by the preceding rotation crop; however, in 2005, yields were greater in peanut following 2 years of TifGrain 102 (2320 kg/ha) and corn (2504 kg/ha) than following HGM-100 (1821 kg/ha). The lower yields following HGM-100 were likely due to greater populations of M. arenaria that had developed on the susceptible pearl millet hybrid. Economic analyses showed greater returns above variable costs from the grain crops than from the peanut crops. We conclude that the resistant pearl millet hybrid TifGrain 102 is as effective as corn in limiting population increase of M. arenaria and in enhancing peanut yield compared to the susceptible pearl millet hybrid, HGM-100. Additional research is needed to improve the profitability of pearl millet, and nematode resistance should be an important component of crop improvement programs. Accepted for publication 20 October 2006. Published 2 February 2007.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 470
Author(s):  
Min Zhang ◽  
Hongyuan Zhang ◽  
Jie Tan ◽  
Shuping Huang ◽  
Xia Chen ◽  
...  

Eggplant (Solanum melongena L.), which belongs to the Solanaceae family, is an important vegetable crop. However, its production is severely threatened by root-knot nematodes (RKNs) in many countries. Solanum torvum, a wild relative of eggplant, is employed worldwide as rootstock for eggplant cultivation due to its resistance to soil-borne diseases such as RKNs. In this study, to identify the RKN defense mechanisms, the transcriptomic profiles of eggplant and Solanum torvum were compared. A total of 5360 differentially expressed genes (DEGs) were identified for the response to RKN infection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that these DEGs are mainly involved in the processes of response to stimulus, protein phosphorylation, hormone signal transduction, and plant-pathogen interaction pathways. Many phytohormone-related genes and transcription factors (MYB, WRKY, and NAC) were differentially expressed at the four time points (ck, 7, 14, and 28 days post-infection). The abscisic acid signaling pathway might be involved in plant-nematode interactions. qRT-PCR validated the expression levels of some of the DEGs in eggplant. These findings demonstrate the nematode-induced expression profiles and provide some insights into the nematode resistance mechanism in eggplant.


Author(s):  
Anil Baniya ◽  
Soumi Joseph ◽  
Larry Duncan ◽  
William Crow ◽  
Tesfamariam Mengistu

AbstractSex determination is a key developmental event in all organisms. The pathway that regulates sexual fate has been well characterized at the molecular level in the model free-living nematode Caenorhabditis elegans. This study aims to gain a preliminary understanding of sex-determining pathways in a plant-parasitic nematode Meloidogyne incognita, and the extent to which the roles of the sex determination genes are conserved in a hermaphrodite species, C. elegans, and plant-parasitic nematode species, M. incognita. In this study, we targeted two sex-determining orthologues, sdc-1 and tra-1 from M. incognita using RNA interference (RNAi). RNAi was performed by soaking second-stage juveniles of M. incognita in a solution containing dsRNA of either Mi-tra-1or Mi-sdc-1 or both. To determine the effect of RNAi of the target genes, the juveniles treated with the dsRNA were inoculated onto a susceptible cultivar of cowpea grown in a nutrient pouch at 28 °C for 5 weeks. The development of the nematodes was analyzed at different time points during the growth period and compared to untreated controls. Our results showed that neither Mi-sdc-1 nor Mi-tra-1 have a significant role in regulating sexual fate in M. incognita. However, the silencing of Mi-sdc-1 significantly delayed maturity to adult females but did not affect egg production in mature females. In contrast, the downregulation of Mi-tra-1 transcript resulted in a significant reduction in egg production in both single and combinatorial RNAi-treated nematodes. Our results indicate that M. incognita may have adopted a divergent function for Mi-sdc-1 and Mi-tra-1distinct from Caenorhabditis spp. However, Mi-tra-1 might have an essential role in female fecundity in M. incognita and is a promising dsRNA target for root-knot nematode (RKN) management using host-delivered RNAi.


Nematology ◽  
2017 ◽  
Vol 19 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Israel L. Medina ◽  
Cesar B. Gomes ◽  
Valdir R. Correa ◽  
Vanessa S. Mattos ◽  
Philippe Castagnone-Sereno ◽  
...  

Root-knot nematodes (Meloidogyne spp.) significantly impact potato production worldwide and in Brazil they are considered one of the most important group of nematodes affecting potatoes. The objectives of this study were to survey Meloidogyne spp. associated with potatoes in Brazil, determine their genetic diversity and assess the aggressiveness of M. javanica on two susceptible potato cultivars. Fifty-seven root-knot nematode populations were identified using esterase phenotyping, including Meloidogyne javanica, M. incognita, M. arenaria and M. ethiopica. Overall, root-knot nematodes were present in ca 43% of sampled sites, in which M. javanica was the most prevalent species, and the phenotypes Est J3, J2a and J2 occurred in 91.2, 6.7 and 2.1% of the positive samples, respectively. Other species, such as M. incognita, M. arenaria and M. ethiopica, were found less frequently and occurred at rates of 6.4, 4.3 and 2.1% of the samples, respectively. Sometimes, M. javanica was found in mixtures with other root-knot nematodes in ca 10.6% of sites containing Meloidogyne. After confirming the identification of 17 isolates of M. javanica and one isolate each of M. incognita, M. arenaria and M. ethiopica by SCAR markers, the populations were used to infer their genetic diversity using RAPD markers. Results revealed low intraspecifc genetic diversity among isolates (13.9%) for M. javanica. Similarly, M. javanica sub-populations (J2a) clustered together (81% of bootstrap), indicating subtle variation from typical J3 populations. The aggressiveness of four populations of M. javanica from different Brazilian states on two susceptible potato cultivars was tested under glasshouse conditions. Results indicated differences in aggressiveness among these populations and showed that potato disease was proportional to nematode reproduction factor.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Z. M. Hassan ◽  
N. A. Sebola ◽  
M. Mabelebele

AbstractWorldwide, millets are regarded as a significant grain, however, they are the least exploited. Millet grain is abundant in nutrients and health-beneficial phenolic compounds, making it suitable as food and feed. The diverse content of nutrients and phenolic compounds present in finger and pearl millet are good indicators that the variety of millet available is important when selecting it for use as food or feed. The phenolic properties found in millets compromise phenolic acids, flavonoids, and tannins, which are beneficial to human health. Moreover, finger millet has an exceptionally unique, more abundant, and diverse phenolic profile compared to pearl millet. Research has shown that millet phenolic properties have high antioxidant activity. The presence of phytochemicals in millet grains has positive effect on human health by lowering the cholesterol and phytates in the body. The frantic demands on maize and its uses in multiple industries have merited the search for alternative grains, to ease the pressure. Substitution of maize with pearl and finger millets in the diets of different animals resulted in positive impact on the performance. Including these grains in the diet may improve health and decrease the risks of diseases. Pearl millet of 50% or more can be used in broiler diets without adversely affecting broiler performance or egg production. Of late, millet grain has been incorporated in other foods and used to make traditional beverages. Thus, the core aim of this review is to provide insight and comprehension about the nutritional and phenolic status of millets and their impact on human and livestock.


Sign in / Sign up

Export Citation Format

Share Document