scholarly journals The potential of gaseous chlorine dioxide for the control of citrus postharvest stem-end rot caused by Lasiodiplodia theobromae

Plant Disease ◽  
2021 ◽  
Author(s):  
Tian Zhong ◽  
Jiuxu Zhang ◽  
Xiuxiu Sun ◽  
Jingjing Kou ◽  
Zhike Zhang ◽  
...  

The focus of this study was to develop technologies using chlorine dioxide (ClO2) gas to control postharvest stem-end rot of citrus caused by Lasiodiplodia theobromae. Mycelial growth of L. theobromae on potato dextrose agar (PDA) plugs was completely inhibited by a 24-h ClO2 exposure provided by 0.5 g of solid ClO2 generating granular mixture in a 7.7-liter sealed container. In vivo experiments were conducted on artificially inoculated ‘Tango’ and naturally infected ‘US Early Pride’ mandarins. When ClO2 treatments were initiated 0 to 6 h after inoculation, decay development was significantly reduced as compared with the control and higher ClO2 doses were more effective. A ClO2 treatment (using 3 g of generating mixture/7.7-liter sealed container) administered 0 h after inoculation resulted in 17.6% Diplodia stem-end rot incidence compared to 95.6% in the control, while the same treatment administered 24 h after inoculation was much less effective, resulting in 63.0% incidence compared to 85.4% in the control. Diplodia stem-end rot incidence of naturally infected fruit after using 6 or 9 g generating mixture/24-liter sealed box was 23.8 or 25.7%, respectively, compared to 47.9% for control fruit. The ClO2 treatments had no negative effects on fruit quality characteristics including weight loss, firmness, puncture resistance, titratable acids (TA), total soluble solids (TSS), and rind color. Albedo pH at wounds was significantly reduced from 6.0 to 4.8 by the ClO2 treatments while undamaged albedo remained at 5.8. In addition, no visible physiological defects, such as peel browning and bleaching, were observed on ClO2 treated fruit. These results indicate that ClO2 gas has the potential to be developed as a component of an integrated citrus postharvest decay control system to minimize fruit losses.

2020 ◽  
Vol 5 (10) ◽  

Cold atmospheric plasma (CAP), a room temperate ionised gas, known as the fourth state of matter is an ionised gas and can be produced from argon, helium, nitrogen, oxygen or air at atmospheric pressure and low temperatures. CAP has become a new promising way for many biomedical applications, such as disinfection, cancer treatment, root canal treatment, wound healing, and other medical applications. Among these applications, investigations of plasma for skin wound healing have gained huge success both in vitro and in vivo experiments without any known significant negative effects on healthy tissues. The development of CAP devices has led to novel therapeutic strategies in wound healing, tissue regeneration and skin infection management. CAP consists of a mixture of multitude of active components such as charged particles, electric field, UV radiation, and reactive gas species which can act synergistically. CAP has lately been recognized as an alternative approach in medicine for sterilization of wounds by its antiseptic effects and promotion of wound healing by stimulation of cell proliferation and migration of wound related skin cells. With respect to CAP applications in medicine, this review focuses particularly on the potential of CAP and the known molecular basis for this action. We summarize the available literature on the plasma devices developed for wound healing, the current in vivo and in vitro use of CAP, and the mechanism behind it as well as the biosafety issues.


HortScience ◽  
2002 ◽  
Vol 37 (1) ◽  
pp. 151-156 ◽  
Author(s):  
W.T. Liu ◽  
C.L. Chu ◽  
T. Zhou

Fumigation with 1 mg·L-1 of thymol vapor retarded mycelial growth of Monilinia fructicola (G. Wint.) Honey. Mean colony diameter was reduced from 49 mm in the control to 13 mm when the conidia were cultured on potato dextrose agar. Fumigation of apricots (Prunus armeniaca L.) with 2 mg·L-1 of thymol vapor reduced the germination of M. fructicola conidia to 2% compared with 98% on untreated fruit. Microscopic observations showed that the spores fumigated with thymol were shrunken and had collapsed protoplasts. In in vivo experiments, surface-sterilized apricots and plums (Prunus salicina L.) were inoculated with conidia of M. fructicola by applying 20 μL of a spore suspension to wounds on the fruit, and then were fumigated with thymol or acetic acid. The incidence of brown rot was reduced to 3% and 32% when `Manch' apricots were fumigated with thymol or acetic acid at 5 mg·L-1, respectively, compared with 64% incidence in untreated fruit. Fumigation of `Violette' plums with thymol or acetic acid at 8 mg·L-1 reduced brown rot from 88% in the control to 24% and 25%, respectively. Fumigation of `Veeblue' plums with thymol at 4 mg·L-1 reduced brown rot from 56% in the control to 14%. Fumigation of apricots with thymol resulted in firmer fruit and higher surface browning, but total soluble solids and titratable acidity were not affected. Fumigation of plum with thymol resulted in higher total soluble solids, but firmness and titratable acidity were not affected. Thymol fumigation caused phytotoxicity on apricots but not on plums.


Author(s):  
Gerlind Schneider ◽  
Sibylle Voigt ◽  
Alexander Alde ◽  
Albrecht Berg ◽  
Dirk Linde ◽  
...  

Objective: Evaluation of μCT scans of bone implant complexes often shows a specific problem: if an implant material has a very similar radiopacity as the embedding medium (e.g. methacrylate resin), the implant is not visible in the μCT image. Segmentation is not possible, and especially osseointegration as one of the most important parameter for biocompatibility is not evaluable. Methods: To ensure μCT visualisation and contrast enhancement of the evaluated materials, the embedding medium Technovit® VLC7200 was doped with an iodine monomer for higher radiopacity in different concentrations and tested regarding to handling, polymerisation, and histological preparation, and visualisation in µCT. Six different µCT devices were used and compared with regard to scan conditions, contrast, artefacts, image noise, and spatial resolution for the evaluation of the bone-implant blocks. Results: Visualisation and evaluation of all target structures showed very good results in all μCT scans as well as in histology and histological staining, without negative effects caused by iodine doping. Subsequent evaluation of explants of in vivo experiments without losing important information was possible with iodine doped embedding medium. Conclusion: Visualisation of implants with a similar radiopacity as the embedding medium could be considerably improved. µCT scan settings should be selected with the highest possible resolution, and different implant materials should be scanned individually for optimal segmentation. µCT devices with higher resolutions should be preferred. Advances in knowledge: Iodine doped embedding medium is a useful option to increase radiopacity for better visualisation and evaluation of special target structures in µCT.


2019 ◽  
Vol 35 (1) ◽  
pp. 77-83
Author(s):  
Ye Ji Lee ◽  
Jin-Ju Jeong ◽  
Hyunjung Jin ◽  
Wook Kim ◽  
Gyeong-Dan Yu ◽  
...  

Author(s):  
Prithiv K R Kumar

Renal failure is a major health problem. The mortality rate remain high despite of several therapies. The most complex of the renal issues are solved through stem cells. In this review, different mechanism for cure of chronic kidney injury along with cell engraftment incorporated into renal structures will be analysed. Paracrine activities of embryonic or induced Pluripotent stem cells are explored on the basis of stem cell-induced kidney regeneration. Several experiments have been conducted to advance stem cells to ensure the restoration of renal functions. More vigour and organised protocols for delivering stem cells is a possibility for advancement in treatment of renal disease. Also there is a need for pressing therapies to replicate the tissue remodelling and cellular repair processes suitable for renal organs. Stem cells are the undifferentiated cells that have the ability to multiply into several cell types. In vivo experiments on animal’s stem cells have shown significant improvements in the renal regeneration and functions of organs. Nevertheless more studies show several improvements in the kidney repair due to stem cell regeneration.


2018 ◽  
Vol 68 (12) ◽  
pp. 2747-2751
Author(s):  
Marioara Nicula ◽  
Nicolae Pacala ◽  
Lavinia Stef ◽  
Ioan Pet ◽  
Dorel Dronca ◽  
...  

Living organisms take nutrients from the environment, and together with them, substances with toxic potential � such as heavy metals. Lead is one common metal pollutant especially in aquatic environment, from where the fish can be intoxicated very easily. Bioavailability, distribution, toxic action, synergistic and antagonistic effects are characteristics which can alter the fish health. Our experimental study followed the effects of lead overload in water on iron distribution, in different tissues sample Carassius gibelio Bloch fish. We performed the experiment in four different fish groups: control C; lead � Pb (administration of lead in water 0.075mg/mL of water, as Pb(NO3)2 x � H2O); lead (the same dose) and 2% of freeze-dry garlic incorporated into fishes� food � Pb+garlic; lead (the same dose) and 2% chlorella incorporated into fishes� food � Pb+chlorella, for 21 consecutive days. The iron concentration was analysed with AAS (Atomic Absorption Spectroscopy) from gills, muscle, skin (and scales), intestine, liver, heart, brain, ovary, testicles, and kidney. The obtained data presented a significantly decrease of iron content in all tested tissue samples that demonstrated, alteration of iron homeostasis, explained by a strong antagonistic effect of lead on iron. Our experiment showed that biologic active principles from garlic and chlorella act like natural protectors, and potentiate the iron deficiency even in the case of lead overload in aquatic environment, for fish.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2018 ◽  
Vol 18 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Mohsen Mohammadgholi ◽  
Nourollah Sadeghzadeh ◽  
Mostafa Erfani ◽  
Saeid Abediankenari ◽  
Seyed Mohammad Abedi ◽  
...  

Background: Human fibronectin extra-domain B (EDB) is particularly expressed during angiogenesis progression. It is, thus, a promising marker of tumour growth. Aptides are a novel class of peptides with high-affinity binding to specific protein targets. APTEDB is an antagonist-like ligand that especially interacts with human fibronectin EDB. Objective: This study was the first attempt in which the hydrazinonicotinamide (HYNIC)-conjugated APTEDB was labelled with technetium-99m (99mTc) as an appropriate radiotracer and tricine/EDDA exchange labeling. Methods: Radiochemical purity, normal saline, and serum stability were evaluated by HPLC and radio-isotope TLC scanner. Other examinations, such as protein-binding calculation, dissociation radioligand binding assay, and partition coefficient constant determination, were also carried out. The cellular-specific binding of 99mTc- HYNIC-conjugated APTEDB was assessed in two EDB-positive (U87MG) and EDB-negative (U373MG) cell lines. Bio-distribution was investigated in normal mice as well as in U87MG and U373MG tumour-bearing mice. Eventually, the radiolabelled APTEDB was used for tumour imaging using planar SPECT. Results: Radiolabelling was achieved with high purity (up to 97%) and accompanied by high solution (over 90% after overnight) and serum (80% after 2 hours) stability. The obtained cellular-specific binding ratio was greater than nine-fold. In-vivo experiments showed rapid blood clearance with mainly renal excretion and tumour uptake specificity (0.48±0.03% ID/g after 1h). The results of the imaging also confirmed considerable tumour uptake for EDB-positive cell line compared with the EDB-negative one. Conclusion: Aptides are considered to be a potent candidate for biopharmaceutical applications. They can be modified with imaging or therapeutic agents. This report shows the capability of 99mTc-HYNIC-APTEDB for human EDB-expressing tumours detection.


Sign in / Sign up

Export Citation Format

Share Document