scholarly journals Disease Development and Changes in the Natural Pseudomonas syringae pv. tomato Populations on Field Tomato Plants

Plant Disease ◽  
1999 ◽  
Vol 83 (8) ◽  
pp. 759-764 ◽  
Author(s):  
D. A. Cuppels ◽  
J. Elmhirst

The probe TPRI, derived from the Pseudomonas syringae pv. tomato gene cluster controlling production of the phytotoxin coronatine, was used in conjunction with the semiselective medium VBTar to trace natural populations of the pathogen on tomato plants from just before planting to harvest. In a survey of transplant seedlings in greenhouses, P. syringae pv. tomato populations ranged from 8 × 100 to 3.2 × 105 CFU/g of leaf tissue. Copper-sprayed seedlings had similar populations to nonsprayed plants, but copper tolerance was common among the P. syringae pv. tomato strains surveyed. Transplant seedlings from three greenhouses were tagged, randomly planted in three grower fields, and monitored for P. syringae pv. tomato and disease severity over two growing seasons. Statistical analysis indicated that, when the P. syringae pv. tomato populations of greenhouse plants were small, as recorded in this study, there was no correlation between greenhouse infestation and disease severity in the field. Environmental conditions played a greater role than greenhouse infestation in disease development. Once formed, leaf lesions remained a good inoculum source (104 to 105 CFU) throughout the 7-week life of the leaf. Bacterial speck damage correlated well in both years (r = 0.80 and r = 0.86, respectively) with P. syringae pv. tomato population levels.

Author(s):  
Mara Quaglia ◽  
Marika Bocchini ◽  
Benedetta Orfei ◽  
Roberto D’Amato ◽  
Franco Famiani ◽  
...  

AbstractThe purpose of this study was to determine whether zinc phosphate treatments of tomato plants (Solanum lycopersicum L.) can attenuate bacterial speck disease severity through reduction of Pseudomonas syringae pv. tomato (Pst) growth in planta and induce morphological and biochemical plant defence responses. Tomato plants were treated with 10 ppm (25.90 µM) zinc phosphate and then spray inoculated with strain DAPP-PG 215, race 0 of Pst. Disease symptoms were recorded as chlorosis and/or necrosis per leaf (%) and as numbers of necrotic spots. Soil treatments with zinc phosphate protected susceptible tomato plants against Pst, with reductions in both disease severity and pathogen growth in planta. The reduction of Pst growth in planta combined with significantly higher zinc levels in zinc-phosphate-treated plants indicated direct antimicrobial toxicity of this microelement, as also confirmed by in vitro assays. Morphological (i.e. callose apposition) and biochemical (i.e., expression of salicylic-acid-dependent pathogenesis-related protein PR1b1 gene) defence responses were induced by the zinc phosphate treatment, as demonstrated by histochemical and qPCR analyses, respectively. In conclusion, soil treatments with zinc phosphate can protect tomato plants against Pst attacks through direct antimicrobial activity and induction of morphological and biochemical plant defence responses.


2020 ◽  
Vol 12 (2) ◽  
pp. 117-117
Author(s):  
S. Nedyalkova ◽  
Z. Stoyanova ◽  
R. Rodeva

Abstract. Parastagonospora nodorum is an important necrotrophic fungal pathogen causing leaf and glume blotch of wheat worldwide. The disease can result in significant losses in grain yield and quality. The purpose of the current investigation was to estimate the occurrence of P. nodorum as a foliar and ear pathogen of durum wheat and disease severity on a set of cultivars under natural infection. Field experiments were performed at two locations (Sofia and Chirpan) in the period 2010-2017. Twelve winter cultivars of durum wheat were involved in the study. P. nodorum was not found at both locations in 2010 and 2011. Thereafter the pathogen was recorded on the leaves of durum wheat in Sofia every year except 2013. Symptoms included chlorosis and necrosis of the leaf tissue. The strongest manifestation of the disease was observed in 2016 and especially in 2017. In Chirpan leaf blotch was noticed only in 2 out of 8 growing seasons. The ear infection led to development of dark brown patches on the glumes, which later became purple-brown. These symptoms were noted in Sofia in 2014, 2016 and 2017. In Chirpan, glume blotch of studied cultivars was recorded in 2017 but in the previous year the symptoms were widely observed on some genotypes among the initial breeding material of durum wheat. In the present investigation P. nodorum caused leaf and glume blotch only. Symptoms on stems, nodes and leaf sheaths were not noted at both locations. The 12 cultivars under study differed in their susceptibility to leaf and glume blotch. The leaf symptoms caused by P. nodorum were recorded on all cultivars, but were more pronounced on Zvezditsa, Deyana and GK Bétadur. The glume blotch was more noticeable on Vazhod. The results of this multiyear research showed that although P. nodorum did not appear every year, the pathogen could contribute to the leaf and glume blotch of durum wheat under conditions favourable for disease development. The evaluation of cultivars demonstrated encouraging preliminary results. Several cultivars showed lower disease severity on flag leaf and no or little infection on the ear. They deserve further studies on resistance to P. nodorum.


Author(s):  
D.A. Palmer ◽  
C.L. Bender

Coronatine is a non-host-specific phytotoxin produced by several members of the Pseudomonas syringae group of pathovars. The toxin acts as a virulence factor in P. syringae pv. tomato, allowing the organism to multiply to a higher population density and develop larger lesions than mutant strains unable to produce the toxin. The most prominent symptom observed in leaf tissue treated with coronatine is an intense spreading chlorosis; this has been attributed to a loss of chlorophylls a and b in tobacco. Coronatine's effects on membrane integrity and cell ultrastructure have not been previously investigated. The present study describes changes in tomato leaves in response to treatment with purified coronatine, infection by a coronatine-producing strain of P. syringae pv. tomato, and infection by a cor" mutant.In contrast to H2O-treated tissue, coronatine-treated tissue showed a diffuse chlorosis extending approximately 5 mm from the inoculation site. Leaf thickness, cell number, and cell dimensions were similar for both healthy and coronatine-treated, chlorotic tissue; however, the epidermal cell walls were consistently thicker in coronatine-treated leaves (Figs, la and lb).


Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1222-1229 ◽  
Author(s):  
E. A. Newberry ◽  
L. Ritchie ◽  
B. Babu ◽  
T. Sanchez ◽  
K. A. Beckham ◽  
...  

Bacterial leaf spot of watermelon caused by Pseudomonas syringae has been an emerging disease in the southeastern United States in recent years. Disease outbreaks in Florida were widespread from 2013 to 2014 and resulted in foliar blighting at the early stages of the crop and transplant losses. We conducted a series of field trials at two locations over the course of two years to examine the chemical control options that may be effective in management of this disease, and to investigate the environmental conditions conducive for bacterial leaf spot development. Weekly applications of acibenzolar-S-methyl (ASM) foliar, ASM drip, or copper hydroxide mixed with ethylene bis-dithiocarbamate were effective in reducing the standardized area under the disease progress curve (P < 0.05). Pearson’s correlation test demonstrated a negative relationship between the average weekly temperature and disease severity (–0.77, P = 0.0002). When incorporated into a multiple regression model with the square root transformed average weekly rainfall, these two variables accounted for 71% of the variability observed in the weekly disease severity (P < 0.0001). This information should be considered when choosing the planting date for watermelon seedlings as the cool conditions often encountered early in the spring season are conducive for bacterial leaf spot development.


Plant Disease ◽  
1997 ◽  
Vol 81 (8) ◽  
pp. 892-896 ◽  
Author(s):  
E. L. Little ◽  
S. T. Koike ◽  
R. L. Gilbertson

Pseudomonas syringae pv. apii, causal agent of bacterial leaf spot (BLS) of celery, was first identified in California in 1989. By 1991, BLS was apparent in all celery-growing areas of the state. Greenhouse-produced transplants were affected most severely, and disease incidence approached 100% in some greenhouses. In this study, sources of inoculum and factors contributing to disease development were investigated in three Salinas Valley greenhouse operations during the 1991, 1992, and 1993 celery transplant seasons (January to August). Epiphytic P. syringae pv. apii was not detected on celery transplants until April or May of each year. Increased epiphytic populations preceded BLS outbreaks, and high-pressure, overhead irrigation favored bacterial infiltration and disease development. In seed-wash assays, P. syringae pv. apii was recovered from 5 of 24 commercial celery seed lots. In field tests, epiphytic P. syringae pv. apii was found on umbels of inoculated celery plants, and seeds from these plants were heavily contaminated with P. syringae pv. apii. Contaminated seed produced seedlings with large epiphytic P. syringae pv. apii populations. Hot-water treatment (50°C for 25 min) eliminated >99.9% of seed contamination. Based on these results, disease management techniques are proposed.


2002 ◽  
Vol 15 (7) ◽  
pp. 654-661 ◽  
Author(s):  
Jianxiong Li ◽  
Libo Shan ◽  
Jian-Min Zhou ◽  
Xiaoyan Tang

Tomato plants overexpressing the disease resistance gene Pto (35S∷Pto) exhibit spontaneous cell death, accumulation of salicylic acid (SA), elevated expression of pathogenesis-related genes, and enhanced resistance to a broad range of pathogens. Because salicylate plays an important role in the cell death and defense activation in many lesion mimic mutants, we investigated the interaction of SA-mediated processes and the 35S∷Pto-mediated defense pathway by introducing the nahG transgene that encodes salicylate hydroxylase. Here, we show that SA is not required for the 35S∷Pto-activated microscopic cell death and plays a minor role in defense gene activation and general disease resistance in 35S∷Pto plants. In contrast, temperature greatly affects the spontaneous cell death and general resistance in 35S∷Pto plants, and high temperature inhibits the cell death. The NahG tomato plants develop spontaneous, unconstrained necrotic lesions on leaves. These lesions also are initiated by the inoculation of a virulent strain of Pseudomonas syringae pv. tomato. However, the NahG-dependent necrotic lesions are inhibited in the NahG/35S∷Pto plants. This inhibition is most pronounced under conditions favoring the 35S∷Pto-mediated spontaneous cell death development. These results indicate that the signaling pathways activated by Pto overexpression suppress the cellular damage that is caused by SA depletion. We also found that ethylene is dispensable for the 35S∷Pto-mediated general defense.


2020 ◽  
Vol 7 ◽  
pp. 33-42
Author(s):  
Ashok Acharya ◽  
Prabin Ghimire ◽  
Dhurba Raj Joshi ◽  
Kishor Shrestha ◽  
Govinda Sijapati ◽  
...  

Rice blast (Pyriculariaoryzae Cavara) is one of the most devastating diseases affecting the rice crop in across the world. Systemic fungicides are used for the suppression of blast diseases caused by fungal pathogens. Propiconazole and Carbendazim are commercial chemical control products available in markets for the control of the fungal pathogen. An experiment was conducted to examine the effectiveness of systemic fungicide on suppression of rice blast incidence in farmers' field during wet seasons in 2016. The treatments consisted of the use of different levels of propiconazole and Carbendazim on ‘Rato Basmati’ a landrace rice variety. The experiments were arranged in a randomized complete block design with three replications. The disease was scored according to the standard scale developed by the International Rice Research Institute (IRRI). Disease severity and Area under Disease Progressive curve (AUDPC) was computed based on that scale score. Propiconazole and Carbendazim at different levels reduce disease development than no treatment (control). But its efficacy was not consistent. The magnitude of disease suppression by Propiconazole was high as compared to Carbendazim. The application of propiconazole at the rate of 1.5 ml effectively reduced disease severity and AUDPC at different dates. So propiconazole at the rate of 1.5 ml thrice at weekly intervals is effective to reduce the disease development


2012 ◽  
Vol 48 (No. 2) ◽  
pp. 74-79 ◽  
Author(s):  
S.M.A. Nashwa ◽  
K.A.M. Abo-Elyousr

The antimicrobial activity of six plant extracts from Ocimum basilicum (Sweat Basil), Azadirachta indica (Neem), Eucalyptus chamadulonsis (Eucalyptus), Datura stramonium (Jimsonweed), Nerium oleander (Oleander), and Allium sativum (Garlic) was tested for controlling Alternaria solani in vitro and in vivo. In in vitro study the leaf extracts of D. stramonium, A. indica, and A. sativum at 5% concentration caused the highest reduction of mycelial growth of A. solani (44.4, 43.3 and 42.2%, respectively), while O. basilicum at 1% and 5% concentration and N. oleander at 5% concentration caused the lowest inhibition of mycelial growth of the pathogen. In greenhouse experiments the highest reduction of disease severity was achieved by the extracts of A. sativum at 5% concentration and D. stramonium at 1% and 5% concentration. The greatest reduction of disease severity was achieved by A. sativum at 5% concentration and the smallest reduction was obtained when tomato plants were treated with O. basilicum at 1% and 5% concentration (46.1 and 45.2 %, respectively). D. stramonium and A. sativum at 5% concentration increased the fruit yield by 76.2% and 66.7% compared to the infected control. All treatments with plant extracts significantly reduced the early blight disease as well as increased the yield of tomato compared to the infected control under field conditions.


1992 ◽  
Vol 38 (9) ◽  
pp. 883-890 ◽  
Author(s):  
Dennis P. Jackson ◽  
Douglas A. Gray ◽  
Vincent L. Morris ◽  
Diane A. Cuppels

The prototrophic Pseudomonas syringae pv. tomato mutant DC3481, which is the result of a single-site Tn5 insertion, cannot grow and cause disease on tomato plants and cannot use the major organic acids of tomato, i.e., citric, malic, succinic, and tartaric acids, as sole carbon sources. Although nonpathogenic, strain DC3481 can still induce a hypersensitive reaction in nonhost plants. We have identified a 30-kb fragment of P. syringae pv. tomato wild-type DNA that can complement this mutant. EcoRI fragments from this region were subcloned and individually subjected to functional complementation analysis. The 3.8-kb fragment, which was the site of the Tn5 insertion, restored pathogenicity and the ability to use all the major organic acids of tomato as carbon sources. It shares sequence homology with several P. syringae pathovars but not other bacterial tomato pathogens. Our results indicate that sequences on the 3.8-kb EcoRI fragment are required for both the ability to grow on tomato leaves (and thus cause disease) and the utilization of carboxylic acids common to tomato. The 3.8-kb fragment may contain a sequence (or sequences) that regulates both traits. Key words: Pseudomonas syringae pv. tomato, phytopathogenicity, Tn5, tricarboxylic acid metabolism, bacterial speck, growth in planta.


Plant Disease ◽  
1997 ◽  
Vol 81 (7) ◽  
pp. 753-756 ◽  
Author(s):  
S. Sanogo ◽  
S. P. Pennypacker ◽  
R. E. Stevenson ◽  
A. A. MacNab

Field experiments were conducted to determine the relationship of tomato anthracnose to weather variables. Sixteen potted tomato plants were exposed to field conditions within rows of tomato plants for 4 consecutive days at various time periods during the 1993 and 1994 summer growing seasons. Incidence of fruit infection by Colletotrichum coccodes was correlated with rain variables (amount and duration of rain) alone and in combination with other meteorological factors. The best fitting regression equation, accounting for 72% of the variation in anthracnose incidence (arcsine-square root transformed), was Y = 111.77 - 1.16 HNRo, in which HNRo is the numbers of hours during which no rainfall occurs within 4-day intervals that tomato fruit were exposed to field conditions in central Pennsylvania.


Sign in / Sign up

Export Citation Format

Share Document