scholarly journals Is the Emergence of Dothistroma Needle Blight of Pine in France Caused by the Cryptic Species Dothistroma pini?

2012 ◽  
Vol 102 (1) ◽  
pp. 47-54 ◽  
Author(s):  
B. Fabre ◽  
R. Ioos ◽  
D. Piou ◽  
B. Marçais

Dothistroma needle blight (DNB) emerged in France in the past 15 years. This disease is induced by two closely related species: Dothistroma septosporum and D. pini. Although both species are currently present in France, only D. septosporum was reported in the past. We investigated whether a recent arrival of D. pini in France could be a cause of the DNB emergence. We analyzed herbarium specimens of pine needles with DNB symptoms using polymerase chain reaction techniques to study the past frequency of D. pini in France. We also determined the present distribution within the country of D. septosporum and D. pini and compared it with the spatial pattern of DNB reported in the Département de la Santé des Forêts (DSF; French forest health monitoring agency) database. Although D. pini was detected on herbarium specimens from 1907 and 1965, it was not frequent in France in the past. Today, it is frequent, although not present throughout the country, being absent from the north and the east. There is no relationship between the D. pini distribution in France and the spatial pattern of DNB reported in the DSF database. Thus, the emergence of DNB in France cannot be explained by a recent arrival of D. pini.

Author(s):  
Magdalena Zarzyka-Ryszka

The paper describes the past and present distribution of Colchicum autumnale in the vicinity of Cracow, highlights the role of Stanisław Dembosz (who published the first locality of C. autumnale near Igołomia in 1841). Gives information about the occurrence of C. autumnale in Krzeszowice in the 19th century (reported by Bronisław Gustawicz), presents new localities noted in 2012–2014 in meadows in the north-eastern part of the Puszcza Niepołomicka forest and adjacent area (between the Vistula and Raba rivers), and gives a locality found in Cracow in 2005 (no longer extant).


2010 ◽  
Vol 86 (4) ◽  
pp. 412-422 ◽  
Author(s):  
Alex J. Woods ◽  
Don Heppner ◽  
Harry H. Kope ◽  
Jennifer Burleigh ◽  
Lorraine Maclauchlan

BC’s forests have already faced two simultaneous, globally significant, epidemics linked to climate change; the Dothistroma needle blight epidemic in NW BC and the massive mountain pine beetle epidemic throughout the BC Interior. Building on these experiences, we have compiled our best estimates of how we believe other forest health agents may behave as climate change continues to influence our forests. We have drawn on literature from around the world but have focused on the situation in BC. We have made management recommendations based on what we have seen so far and what we expect to come.Key words: climate change, forest health, forest insects, forest pathogens, forest management, British Columbia


Author(s):  
L. A. Golovchenko ◽  
N. G. Dishuk ◽  
S. V. Panteleev ◽  
O. Yu. Baranov

Red band needle blight, or Dothistroma needle blight is one of the most common and harmful diseases of pine. The causative agents of the disease are pathogenic micromycetes Dothistroma septosporum (Dorogin) M. Morelet and Dothistroma pini Hulbary. Dothistroma needle blight was firstly detected in Belarus in 2012 year, but till now information about this disease in the republic is fragmentary. The article presents the results of a survey of different pine trees, carried out in the period 2016–2020 years in botanical and dendrological gardens, forest nurseries and mini-arboretums at forestry enterprises, urban stands, nurseries of decorative plants, garden centers, for the presence of Dothistroma needle blight. The species identification of the causative agent of the disease was carried out by mycological and molecular genetic methods. In this study, Dothistroma needle blight was revealed on individual trees of Pinus mugo, P. nigra and P. ponderosa in the stands of the Central Botanical Garden of the NAS of Belarus, the dendrological garden of the Glubokoe experimental forestry enterprise, in the nurseries of decorative plants in the Grodno and Minsk regions. In the collected samples of needles, the invasive species Dothistroma septosporum was identified. The frequency of occurrence of the pathogen was 4.8–7.2 %, the proportion of observation sites in which this disease was detected at 60 %. The detection of Dothistroma needle blight on pine trees, mainly on planting material imported from abroad, indicates a transboundary route of D. septosporum entering the country. Analysis of literature data indicates the potential danger of Dothistroma needle blight for pine stands in the republic, which in turn requires the organization of regular monitoring of the disease and the development of methods to limit the spread of D. septosporum in the republic.


2003 ◽  
Vol 79 (5) ◽  
pp. 892-897 ◽  
Author(s):  
Alex J Woods

Forest management in the Interior Cedar Hemlock (ICH) zone of the Kispiox TSA in northwest British Columbia has focused on two tree species. Interior spruce (Picea engelmanni Parry ex Engelm. × Picea glauca (Moench) Voss) and lodgepole pine (Pinus contorta var. latifolia Dougl. ex Loud.) have dominated plantations, while historically, western hemlock (Tsuga heterophylla (Raf.) Sarg.), true firs (Abies lasiocarpa (Hook.) Nutt. and (Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes) and western redcedar (Thuja plicata Donn ex D. Don), have dominated the landscape. Tomentosus root disease (Inonotus tomentosus (Fr.) Teng) and Dothistroma needle blight (Mycosphaerella pini Rostr. in Munk) are the principal diseases affecting interior spruce and lodgepole pine plantations, respectively. Tomentosus root disease was found in 92% of spruce-dominated stands 100 years and older in the study area. The annual recruitment of dead interior spruce and lodgepole pine tree volume due to the disease in those stands is 4.29 m3/ha or 51 990 m3. The incidence of Tomentosus root disease in ten randomly selected spruce leading plantations aged 25–30 years ranged from 0.6% to 10.4% and averaged 5.9% of the host trees. Dothistroma needle blight was the most prevalent pest in a survey of 100 randomly selected lodgepole pine plantations and has caused considerable crop tree mortality. The disease has even caused mortality in 55-year-old lodgepole pine trees. Maintaining species diversity is essential to long-term forest health. Intensive planting of interior spruce and lodge-pole pine in this study area appears to have exacerbated disease problems. Key words: forest health, species diversity, interior spruce, lodgepole pine, Tomentosus root disease, Dothistroma needle blight


2014 ◽  
Vol 60 (No. 11) ◽  
pp. 484-486 ◽  
Author(s):  
A.J. Woods

As the climate continues to change, gaps in our understanding of how the altered environment will affect forest hosts and their pathogens widen. In some areas pathogens thought to be present for centuries are changing their behaviour. Dothistroma needle blight caused by the fungus Dothistroma septosporum in northwest British Columbia (BC), Canada, is a good example. In this area both the pathogen and the host, lodgepole pine (Pinus contorta var. latifolia), are considered native species, but here Dothistroma has been responsible for killing mature host trees, which is unprecedented. A plausible link between warmer, wetter summers and directional climate change has been suggested as the primary driver. Those environmental conditions appear to be affecting the host/pathogen relationship for other diseases in the neighbouring central interior of BC including comandra blister rust (Cronartium comandrae). Disrupted host/pathogen relationships tend to favour the short-lived more adaptable pathogens rather than their long-lived hosts. These changes in forest health have not been well accounted for in fields of forest science that have been built on stability and predictability.    


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 841-841 ◽  
Author(s):  
D. Piou ◽  
R. Ioos

Dothistroma needle blight (DNB), also known as red band needle blight, is an important fungal disease of Pinus spp. that occurs worldwide. On the basis of molecular and morphological studies of the anamorphic stage, Barnes et al. (1) showed that two closely related species were involved in DNB: Dothistroma septosporum (Dorog.) Morelet and D. pini Hulbary. D. septosporum (teleomorph: Mycosphaerella pini Rostr.) has a worldwide distribution and is reported as the species that caused past epidemics of DNB. This species is reported on more than 80 different pine species, and Pinus radiata D. Don (Monterey pine) is classified as a highly or moderately susceptible species, depending on the published sources (4). D. pini (telemorph: unknown) was initially found on needles of P. nigra J. F. Arnold collected from 1964 to 2001 in the north central United States (Minnesota, Nebraska, and Michigan). It was subsequently found in Ukraine and southwestern Russia, where it has been associated with the emergence of DNB on P. nigra subsp. pallasiana (Lamb.) Holmboe, in Hungary on P. nigra, and in Russia on P. mugo Turra (1). In France, D. pini was reported for the first time on P. nigra, and was sometimes found in association with D. septosporum on the same needles (3). Later on, a more intensive survey of DNB was launched in France and 216 stands of Pinus sp. were studied. D. septosporum and D. pini were detected in 133 and 123 stands, respectively. Both species co-occurred in 40 stands but D. pini was only found on P. nigra (subsp. laricio and austriaca) (2). Up to now, D. pini was therefore only reported on European pine species, mainly on the different allopatric subspecies belonging to the black pine complex and on one occasion on P. mugo, which belongs to the same section and subsection as P. nigra. In March 2011, typical symptoms of DNB (needles with orangey-red brown distal ends, dark red bands, and green bases; small and black fruit bodies within the bands) were observed in a 50- to 60-year old P. radiata stand of ~3 ha located in Pyrénées Atlantiques close to the Spanish border (1°36′08″ W, 43°19′51″ N). The density of pine was relatively low and patches of natural regeneration were present. Although nearly all of the trees showed DNB symptoms, less than 50% of their needles were affected by the disease. In this stand, needles showing typical DNB symptoms were randomly taken from four pines and mixed together to form a single sample for analysis. Total DNA was extracted from symptomatic needle pieces. The presence of D. pini was confirmed by a specific multiplex real-time PCR analysis using the D. pini-specific primers/probe combination DPtef-F1-/R1/-P1 (3), and by sequencing a D. pini-specific amplicon generated by another conventional PCR (3) using DPtef-F/DPtef-R primers (GenBank Accession KC853059) (3). D. septosporum was not detected in the sample. To our knowledge, this is the first report worldwide of D. pini on P. radiata, a pine species largely planted in Spain and in the Southern Hemisphere. This is also the first report of this pathogen on a non-European pine species. The original native range and the host range of D. pini remain unknown and there is currently no data about host preferences or aggressiveness on different pine species. References: (1) I. Barnes et al. For. Pathol. 41:361, 2011. (2) B. Fabre et al. Phytopathology 102:47, 2012. (3) R. Ioos et al. Phytopathology 100:105, 2010. (4) M. Watt et al. For. Ecol. Manage. 257:1505, 2009.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
YaLan Bai ◽  
Haowen Yan ◽  
Liang Zhou

<p><strong>Abstract.</strong> With rapid development of big data technologies urbanization, the railway networks have also developed rapidly. The optimization of various aspects of railway networks has become more and more important with the shift of main contradictions in our society. With more than one hundred years of development of China railway network expansion, especially under the driving of “one belt and one road”, China railway network is gradually mature. Up to now, the total length of China railways ranks second in the world, with a mileage of 127,000&amp;thinsp;km. The spatial service scope of railway network has been further expanded and the structure has become more and more perfect, which has brought positive impacts on the development of all aspects of China. This paper analyzes the railways (lines) and stations (points) in five different development stages in China in the past 100 years, by means of spatial statistical and nuclear density analysis, based on which the spatial accessibility in different periods is calculated using cost distance analysis. The results show that the distribution of spatial pattern in Middle East region is higher than that in west region. The accessibility shows a significant difference between east and west, that the eastern region is superior to the western region. The difference of spatial pattern between the north and the south of Yangtze river is obvious. The overall spatial pattern presents a concentric structure, radiating from the North China region to the surrounding areas, and the reachable time from the North China region to the East China and Central South regions is gradually increasing.</p><p>The conclusions of the study are as follows:</p><p>(1) The coverage region of China railways has been expanded.Since the completion of the first self-built railway (Beijing-Zhangjiakou Railway), the total length of China railways,has expanded from 5006.5&amp;thinsp;km in 1911 to 127,000&amp;thinsp;km in the end of 2017, which means it has increased by 253.6 times over 100 years, with an average annual growth rate of 1,1933.9&amp;thinsp;km. The coverage of China Railways has expanded from 21 provinces in 1911 to all the provinces.</p><p>(2) The development of the time accessibility of the China railway network takes a favorable trend. The railway network has gradually improved,after more than 100 years’ development. In 1911, the number of prefecture-level stations connected by the China railway network was only 62. By 2000, 83.6% of prefecture-level stations in China had been connected, and the number of connected ground-level stations reached 276. In 2018, more than 3066 ground-level stations have been connected,reaching time reduced from 1030 hours in 1911 to 64 hours in 2018. For example, the time from Beijing to Shanghai was shortened from more than 30 hours to 4 hours, saving about 8 times than before. It provides an important guarantee for the exchange of information between various regions in China.</p><p>(3) The overall expansion of China railway network presents an expansion from the coastal areas to inland areas. A detailed analysis of the seven major economic zones shows the expansion is from Bohai Economic Zone to other economic zones. After five stages of development, the sites in the eastern, central and western regions accounted for 28%, 33% and 38% respectively of the total. The spatial distribution of the sites in the eastern, central and western regions gradually became balanced, but the degree of perfection still differed.</p>


2011 ◽  
Vol 41 (2) ◽  
pp. 412-424 ◽  
Author(s):  
Michael S. Watt ◽  
Rebecca J. Ganley ◽  
Darren J. Kriticos ◽  
Lucy K. Manning

Globally, pitch canker and Dothistroma needle blight are two of the most important diseases of pine species caused, respectively, by the pathogens Fusarium circinatum Nirenberg & O’Donnell and Dothistroma spp. ( Dothistroma septosporum (Dorog.) Morelet and Dothistroma pini Hulbary). The potential distributions of these two diseases under current global climate have previously been modelled and contrast strongly with each other. In this study, we used the process-based niche model CLIMEX to estimate the potential distribution of both diseases in the 2080s under six scenarios that include three contrasting global climate models, each with moderate and high CO2 emissions. For both diseases, under the future climate scenarios, there was a global reduction in the potentially suitable area. Among the three global climate models, this reduction ranged from 11% to 22% for Dothistroma needle blight and from 39% to 58% for pitch canker. The projected potential ranges of both diseases were significantly reduced for Africa, South America, and Australia. In Asia and North America, substantial reductions in potential area were generally projected for pitch canker, while little change to moderate levels of expansion were projected for Dothistroma needle blight. For Europe and New Zealand, expansion of suitable climate was projected under all climate change scenarios for both diseases.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1443-1443 ◽  
Author(s):  
I. Barnes ◽  
J. A. Walla ◽  
A. Bergdahl ◽  
M. J. Wingfield

During 2010 and 2011, Dothistroma needle blight (DNB), also known as red band needle blight, was observed for the first time in Cass and Pembina counties in North Dakota (ND). In Pembina Co., DNB was observed in two sites in the Jay V. Wessels Wildlife Management Area (JWWMA). In September 2009, yellow spots on green needles were observed on some trees along the western edge of one planting. By June 2010, DNB was found on third- and fourth-year needles in both JWWMA plantings. Symptoms had developed into dark brown bands or spots on necrotic needles that contained erumpent black acervuli. In June 2011, similar DNB symptoms were observed on Pinus nigra, P. flexilis, P. ponderosa, P. cembra, and P. albicaulis in the Dale E. Herman Research Arboretum, Cass Co., ND. DNB was collected in July 2011 in Brookings Co., South Dakota (SD), from a seed source provenance planting of P. ponderosa. To identify the species causing the infections, symptomatic needles were collected in 2010 from both sites in JWWMA and then again from all four locations in 2011 on all pine species infected. Needles of P. nigra from a private residence near Fairland in Shelby County, Indiana (IN), were also included in the sample set. The rDNA-ITS was PCR-amplified either directly from conidia obtained from acervuli on the needles or from cultures obtained from isolations. Amplicons were sequenced and a BLAST search was performed in GenBank. The sequences of samples obtained from P. nigra, P. flexilis, P. cembra, and P. albicaulis in ND, P. ponderosa in SD, and P. nigra from IN showed 100% sequence homology with Dothistroma pini (Accession No. AY808302). These isolates were identical to all previously assayed isolates of D. pini from Nebraska, Minnesota, and Michigan in the United States. The P. ponderosa isolates from all three sites in ND differed from the other isolates and contained a 1-bp point mutation from a C to a T at site 72 (sequence deposited in GenBank, accession KJ933441). Mating type was determined using species-specific mating type primers for D. pini (3). All 26 samples from ND and SD were of the MAT-1 idiomorph, while the sample from IN contained the MAT-2 idiomorph. All cultures are maintained at FABI, University of Pretoria, South Africa. The two species that cause DNB, D. septosporum (G. Dorog.) M. Morelet and D. pini Hulbary, are morphologically indistinguishable and molecular characterization remains essential for correct species identification (1). Host and geographical distribution range determinations of Dothistroma spp. made without molecular methods are not valid. To date, species confirmed using DNA sequences in the United States include D. septosporum in the Pacific Northwest states of Oregon and Idaho on P. ponderosa, in Montana on P. contorta v. latifolia, and D. pini in the North Central states of Nebraska, Minnesota, and Michigan on P. nigra (1). This study documents the presence of D. pini in three additional states, including a first report of DNB in ND and SD. It also includes new records of D. pini infecting P. flexilis, P. cembra, P. albicaulis, and P. ponderosa. Results of this study have expanded the documented host range of D. pini in the United States from one (P. nigra) to five species. Globally, D. pini is now known to infect a total of 10 pine hosts (2,4,5). References: (1) I. Barnes et al. Stud. Mycol. 50:551, 2004. (2) I. Barnes et al. For. Pathol. 41:361, 2011. (3) M. Groenewald et al. Phytopathology 97:825, 2007. (4) D. Piou et al. Plant Dis. 98:841, 2014. (5) B. Piskur et al. For. Pathol. 43:518, 2013.


Author(s):  
Kateryna Davydenko

Dothistroma needle blight (DNB), caused by Dothistroma septosporum and Dothistroma pini, is the most important forest disease of pine in many countries. This disease has recently emerged in Ukraine as a major threat to mostly Pinus nigra subsp. pallasiana and less to Scots pine. There is increasing evidence that some fungal and bacterial isolates can reduce the growth and pathogenicity of fungal plant pathogens. In this research, infected needles were collected from 30-year-old Crimean pine (P. nigra subsp. pallasiana) in four locations in Southern Ukraine. In total, 244 of endophytic fungi were recovered from needles of Crimean pine during summer sampling of the host’s microbiome in Ukraine in 2012-2014. Dothistroma spp. were detected using fungal isolation and species-specific priming PCR techniques. Among all endophytes, eight fungal species were selected based on the commonness of their occurrence in the foliage of the host and their antagonistic activity. All selected species were tested for their antifungal activity against Dothistroma needle blight. Good antifungal activity against Dothistroma pini was achieved with the Trichoderma sp. and Gliocladium rosea, indicating their good potential possibility in preventing the Dothistroma needle blight on young pines. Moreover, the significant reduction in numbers of conidia and spore germination was found on needles treated with Trichoderma sp. and Gliocladium rosea, compared to conidia numbers following treatment with other fungi. Thus, the use of an effective biological control agent against Dothistroma could be of value in forest nurseries, where it is essential to reduce losses to D. pini infection prior to transferring pines to field sites for planting out.


Sign in / Sign up

Export Citation Format

Share Document