A MYB Transcription Factor Modulates Panax notoginseng Resistance against the Root Rot Pathogen Fusarium solani by Regulating the Jasmonate Acid Signaling Pathway and Photosynthesis

2021 ◽  
Author(s):  
Diqiu Liu ◽  
Bingling Qiu ◽  
Hongjun Chen ◽  
Lilei Zheng ◽  
Linlin Su ◽  
...  

Root rot of Panax notoginseng, a precious Chinese medicinal plant, seriously impacts its sustainable production. However, the molecular regulatory mechanisms employed by P. notoginseng against root rot pathogens, including Fusarium solani, are still unclear. In this study, the PnMYB2 gene was isolated, and its expression was affected by independent treatments with four signaling molecules, methyl jasmonate, ethephon, salicylic acid, and hydrogen peroxide, as assessed by quantitative real-time PCR. Moreover, the PnMYB2 expression level was induced by F. solani infection. The PnMYB2 protein localized to the nucleus and may function as a transcription factor. When overexpressed in transgenic tobacco, the PnMYB2 gene conferred resistance to F. solani. Jasmonic acid (JA) metabolism and disease resistance-related genes were induced in the transgenic tobacco, and the JA content significantly increased compared with in the wild type. Additionally, transcriptome sequencing, kyoto encyclopedia of genes and genomes(KEGG)annotation enrichment, and metabolic pathway analyses of the differentially expressed genes in the transgenic tobacco revealed that JA metabolic, photosynthetic, and defense response-related pathways were activated. In summary, PnMYB2 is an important transcription factor in the defense responses of P. notoginseng against root rot pathogens that acts by regulating JA signaling, photosynthesis, and disease-resistance genes.

2008 ◽  
Vol 98 (4) ◽  
pp. 372-379 ◽  
Author(s):  
Lee A. Hadwiger

This mini-review points to the usefulness of the pea–Fusarium solani interaction in researching the biochemical and molecular aspects of the nonhost resistance components of peas. This interaction has been researched to evaluate the resistance roles of the phytoalexin, pisatin, the cuticle barrier, and the activation of the nonhost resistance response. Concurrently, evaluations of associated signaling processes and the tools possessed by the pathogen to contend with host obstacles were included. The properties of some pathogenesis-related genes of pea and their regulation and contribution to resistance are discussed. A proposed action of two biotic elicitors on both chromatin conformation and the architectural transcription factor, HMG A, is presented and includes time lines of events within the host immune response.


2020 ◽  
Author(s):  
Kaihui Zhai ◽  
Guangwu Zhao ◽  
Hongye Jiang ◽  
Caixia Sun ◽  
Jingyu Ren

Abstract Background MYB transcription factors are involved in many biological processes, including metabolism, development and responses to biotic and abiotic stresses. In our previous work, a new MYB transcription factor gene, ZmMYB59 was induced by deep sowing and down-regulated during maize seed germination via Real-Time PCR. However, there are few reports on seed germination regulated by MYB proteins and the functions of ZmMYB59 remain unknown. Results In this study, to examine its functions, Agrobacterium -mediated transformation was exploited to generate ZmMYB59 transgenic tobacco and rice. In T 2 generation transgenic tobacco, germination rate, germination index, vigor index and hypocotyl length were significantly decreased by 25.0~50.9%, 34.5~54.4%, 57.5~88.3% and 21.9~31.2% compared to wild-type (WT) lines. In T 2 generation transgenic rice, germination rate, germination index, vigor index and mesocotyl length were notably reduced by 39.1~53.8%, 51.4~71.4%, 52.5~74.0% and 28.3~41.5%, respectively. On this basis, relative physiological indicators were determined. The activities of catalase, peroxidase, superoxide dismutase, ascorbate peroxidase and proline content of transgenic lines were significantly lower than those of WT, suggesting that ZmMYB59 reduced their antioxidant capacity. As well, ZmMYB59 expression extremely inhibited the synthesis of gibberellin A1 (GA 1 ) and cytokinin (CTK), and promoted the synthesis of abscisic acid (ABA) concurrently, which implied that seed germination was repressed by ZmMYB59 in hormone levels. Furthermore, cell length and cell number of hypocotyl/mesocotyl in transgenic plants were notably decreased. Conclusions Taken together, it proposed that ZmMYB59 plays a negative regulation during seed germination in tobacco and rice, which also contributes to illuminate the molecular mechanisms regulated by MYB transcription factors.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yihe Yu ◽  
Dalong Guo ◽  
Guirong Li ◽  
Yingjun Yang ◽  
Guohai Zhang ◽  
...  

Abstract Background Resveratrol is a naturally occurring plant stilbene that exhibits a wide range of valuable biological and pharmacological properties. Although the beneficial effects of trans-resveratrol to human health and plant protection against fungal pathogens and abiotic stresses are well-established, yet little is known about the molecular mechanisms regulating stilbene biosynthesis in plant defense progress. Results Here, we cloned and identified the Chinese wild grape (Vitis davidii) R2R3-MYB transcription factor VdMYB1, which activates defense responses against invading pathogen. VdMYB1 transcripts were significantly upregulated after inoculation with the grapevine powdery mildew fungus Erysiphe necator (Schw.) Burr. Transient expression analysis using onion epidermal cells and Arabidopsis thaliana protoplasts showed that VdMYB1 was localized in the nucleus. Yeast one-hybrid assays revealed that VdMYB1 acts as a transcriptional activator. Grapevine leaves transiently overexpressing VdMYB1 showed a lower number of fungal conidiophores compared with wild-type leaves. Overexpression of VdMYB1 in grapevine leaves did not alter the expression of genes in salicylic acid- and jasmonate-dependent pathways, but affected the expression of stilbene synthase (STS) genes, key regulators of flavonoid metabolism. Results of electrophoretic mobility shift assays and in vivo transcriptional activation assays showed that VdMYB1 binds to the MYB binding site (MYBBS) in the STS2 gene promoter, thus activating STS2 transcription. In heterologous expression assays using tobacco leaves, VdMYB1 activated STS2 gene expression and increased the accumulation of resveratrol. Conclusions Our study showed that VdMYB1 activates STS2 gene expression to positively regulate defense responses, and increases the content of resveratrol in leaves.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0127723 ◽  
Author(s):  
Zijin Zhang ◽  
Jieming Chen ◽  
Yongying Su ◽  
Hanmei Liu ◽  
Yanger Chen ◽  
...  

2020 ◽  
Vol 157 ◽  
pp. 112902
Author(s):  
Bingling Qiu ◽  
Yingpeng Zhang ◽  
Qian Wang ◽  
Zie Wang ◽  
Hongjun Chen ◽  
...  

2011 ◽  
Vol 38 (1) ◽  
pp. 75 ◽  
Author(s):  
Panumas Kotepong ◽  
Saichol Ketsa ◽  
Wouter G. van Doorn

The fruit skin of the mature Malay apple (Syzygium malaccense (L.) Merr. & L.M. Perry) is initially glossy red, then changes to purple. A mutant having mature fruits with white skin has been identified. The skin of wild-type fruit contained five glucose-based anthocyanins (cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside, peonidin-3-O-glucoside, cyanidin-3,5-O-diglucoside and peonidin-3,5-O-diglucoside). Cyanidin-3-O-glucoside accounted for a large proportion of the total anthocyanin content. The accumulation cyanidin-3-O-glucoside during fruit maturation was correlated with increased activities of phenylalanine ammonia lyase (PAL) and UDPglucose : flavonoid 3-O-glucosyltransferase (UF3GlucT, F3GT). In the wild-type fruit skin, transcripts of seven genes that encode enzymes in the anthocyanin biosynthetic pathway were detected. No anthocyanins were found in the white mutant fruit skin. The skin of the white mutant fruit contained transcripts of all seven genes identified, except F3GT. It also showed no F3GT activity. The data indicate that the lack of anthocyanins in the mutant is due to lack of F3GT expression. In addition, the transcript of a MYB transcription factor, highly homologous to three Arabidopsis MYBs involved in anthocyanin synthesis, was virtually absent in the mutant but very high in the wild-type fruit. It is suggested that the lack of MYB expression is part of the cause of the lack of F3GT expression and anthocyanin synthesis during fruit maturation.


Sign in / Sign up

Export Citation Format

Share Document