Genetic Complexity of a Beet Curly Top Virus Population Used to Assess Sugar Beet Cultivar Response to Infection

1996 ◽  
Vol 86 (9) ◽  
pp. 929 ◽  
Author(s):  
Drake Stenger
Plant Disease ◽  
2016 ◽  
Vol 100 (7) ◽  
pp. 1364-1370 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Erik J. Wenninger ◽  
Imad A. Eujayl

Curly top in sugar beet caused by Beet curly top virus (BCTV) is an important yield-limiting disease that can be reduced via neonicotinoid and pyrethroid insecticides. The length of efficacy of these insecticides is poorly understood; therefore, field experiments were conducted with the seed treatment Poncho Beta (clothianidin at 60 g a.i. + beta-cyfluthrin at 8 g a.i. per 100,000 seed) and foliar treatment Asana (esfenvalerate at 55.48 g a.i./ha). A series of four experiments at different locations in the same field were conducted in 2014 and repeated in a neighboring field in 2015, with four treatments (untreated check, Poncho Beta, Asana, and Poncho Beta + Asana) which were arranged in a randomized complete block design with eight replications. To evaluate efficacy, viruliferous (contain BCTV strains) beet leafhoppers were released 8, 9, 10, or 11weeks after planting for each experiment, which corresponded to 1, 2, 3, and 4 weeks after Asana application. Over both years, in 30 of 32 observation dates for treatments with Poncho Beta and 14 of 16 observation dates for Asana, visual curly top ratings decreased an average of 41 and 24%, respectively, with insecticide treatments compared with the untreated check. Over both years, in eight of eight experiments for treatments with Poncho Beta and six of eight experiments for Asana, root yields increased an average of 39 and 32%, respectively, with treatment compared with the untreated check. Over both years, the Poncho Beta treatments increased estimated recoverable sucrose (ERS) yield by 75% compared with the untreated check for weeks 8 and 9. By week 10, only the Poncho Beta + Asana treatment led to increases in ERS in both years, while the influence of increasing host resistance may have made other treatments more difficult to separate. When considering curly top symptoms, root yield, and ERS among all weeks and years, there was a tendency for the insecticides in the Poncho Beta + Asana treatment to complement each other to improve efficacy.


2004 ◽  
Vol 18 (2) ◽  
pp. 388-396 ◽  
Author(s):  
Andrew R. Kniss ◽  
Robert G. Wilson ◽  
Alex R. Martin ◽  
Paul A. Burgener ◽  
Dillon M. Feuz

Field experiments were conducted near Scottsbluff, NE, in 2001 and 2002 to compare economic aspects of glyphosate applied to different glyphosate-resistant sugar beet cultivars with that of conventional herbicide programs applied to near-equivalent, non–glyphosate-resistant conventional cultivars. Glyphosate applied two or three times at 2-wk intervals, beginning when weeds were 10 cm tall, provided excellent weed control, yield, and net economic return regardless of the glyphosate-resistant sugar beet cultivar. All conventional herbicide treatments resulted in similar net economic returns. Although the conventional sugar beet cultivars ‘HM 1640’ and ‘Beta 4546’ responded similarly to herbicide treatments with respect to sucrose content, ‘Beta 4546RR’ produced roots with 1% more sucrose than ‘HM 1640RR’. When averaged over herbicide treatments, a producer planting Beta 4546RR could afford to pay US $185/ha more for glyphosate-resistant technology as could a producer planting HM 1640RR. When averaged over cultivars and herbicide treatments, it is estimated that a producer could afford to pay an additional US $385/ha for glyphosate-resistant technology without decreasing net return.


Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 2083-2089 ◽  
Author(s):  
John J. Weiland ◽  
Kathrin Bornemann ◽  
Jonathan D. Neubauer ◽  
Mohamed F. R. Khan ◽  
Melvin D. Bolton

Beet necrotic yellow vein virus (BNYVV) is the causal agent of rhizomania, a disease of global importance to the sugar beet industry. The most widely implemented resistance gene to rhizomania to date is Rz1, but resistance has been circumvented by resistance-breaking (RB) isolates worldwide. In an effort to gain greater understanding of the distribution of BNYVV and the nature of RB isolates in Minnesota and eastern North Dakota, sugar beet plants were grown in 594 soil samples obtained from production fields and subsequently were analyzed for the presence of BNYVV as well as coding variability in the viral P25 gene, the gene previously implicated in the RB pathotype. Baiting of virus from the soil with sugar beet varieties possessing no known resistance to rhizomania resulted in a disease incidence level of 10.6% in the region examined. Parallel baiting analysis of sugar beet genotypes possessing Rz1, the more recently introgressed Rz2, and with the combination of Rz1 + Rz2 resulted in a disease incidence level of 4.2, 1.0, and 0.8%, respectively. Virus sequences recovered from sugar beet bait plants possessing resistance genes Rz1 and/or Rz2 exhibited reduced genetic diversity in the P25 gene relative to those recovered from the susceptible genotype while confirming the hypervariable nature of the coding for amino acids (AAs) at position 67 and 68 in the P25 protein. In contrast to previous reports, we did not find an association between any one specific AA signature at these positions and the ability to circumvent Rz1-mediated resistance. The data document ongoing virulence development in BNYVV populations to previously resistant varieties and provide a baseline for the analysis of genetic change in the virus population that may accompany the implementation of new resistance genes to manage rhizomania.


Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Sh. Farzadfar ◽  
R. Pourrahim ◽  
A. R. Golnaraghi ◽  
A. Ahoonmanesh

The main areas for field-grown sugar beet (Beta vulgaris) production in Iran were surveyed to study the occurrence and incidence of Alfalfa mosaic virus (AlMV), Beet curly top virus (BCTV), Beet mosaic virus (BtMV), Beet western yellows virus (BWYV), Beet yellows virus (BYV), Chickpea chlorotic dwarf virus (CpCDV), Cucumber mosaic virus (CMV), and Turnip mosaic virus (TuMV) during the growing season of 2001. A total of 5,292 random leaf samples in addition to 1,294 symptomatic leaves were collected from nine commercial sugar beet growing provinces of Iran and tested by tissue-blot immunoassay (TBIA). Serological diagnoses were confirmed by electron microscopy and host range studies. The highest virus incidence among the surveyed provinces was recorded in Qazvin, followed by Fars, Esfahan, Azarbayejan-e-gharbi, Khorasan, Kermanshah, Semnan, and Hamedan. According to the TBIA results, viruses in decreasing order of incidence in sugar beet were BCTV (27.9%), followed by BWYV (17.4%), CpCDV (12.5%), BYV (10.6%), BtMV (7.4%), TuMV (2.9%), AlMV (1.3%), and CMV (1.2%). Nearly 35% of sugar beets in Iran were infected by one or both of the two leafhopper-transmitted viruses (BCTV and CpCDV). Moreover, about 28% were infected by at least one of the six aphid-transmitted viruses (AlMV, BWYV, BtMV, BYV, CMV, and TuMV). Overall, one or more of the eight viruses assayed were detected in 45.5% of the plants surveyed. Several plants (35%) displaying virus-like symptoms did not react with the virus antisera used, suggesting that more viruses or virus-like agents are infecting sugar beets in Iran. In reference to the earlier reports, this is the first report of AlMV and TuMV in sugar beet fields of Iran. Also, this is the first detection of CpCDV as a pathogen of sugar beet.


2009 ◽  
Vol 99 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Li-Fang Chen ◽  
Robert L. Gilbertson

Curly top disease (CTD) of vegetable crops is caused by viruses in the genus Curtovirus (family Geminiviridae). Cucurbits are reported to be susceptible to CTD; however, the disease is rare in California despite annual outbreaks in other hosts (e.g., common bean, pepper, sugar beet, and tomato). Consistent with these observations, no obvious curly top symptoms were observed in melon fields surveyed for CTD in Central California in 2004 and 2005, whereas the disease was readily observed in tomato plants in nearby fields. However, samples of cucurbits from Idaho with curly top-like symptoms, collected in 2005 and 2007, were confirmed to have the disease. The susceptibility of cucurbits (cantaloupe, honeydew melon, pumpkin, and watermelon) to the three curtoviruses known to occur in California (Beet curly top virus, BCTV; Beet severe curly top virus, BSCTV; and Beet mild curly top virus, BMCTV) was evaluated by agroinoculation or leafhopper transmission. Irrespective of the curtovirus species and inoculation method, low rates of infection and mild or symptomless disease phenotypes were observed in cucurbits. In contrast, all inoculated tomato, Nicotiana benthamiana, or shepherd's purse plants were infected and developed severe symptoms. In leafhopper transmission experiments, BMCTV infected cucurbits when leafhoppers acquired the virus from a symptomatic host with a high viral titer (shepherd's purse), whereas no infection occurred when the acquisition host had mild symptoms and a low viral titer (sugar beet); in contrast, the acquisition host did not influence transmission of BMCTV to tomato or shepherd's purse (all plants were infected). This revealed an influence of the acquisition host on leafhopper transmission in a host-specific manner. Our results also indicate that, although cucurbits can develop CTD, they are relatively poor hosts for these curtoviruses.


Plant Disease ◽  
2009 ◽  
Vol 93 (2) ◽  
pp. 155-161 ◽  
Author(s):  
Cord Buhre ◽  
Christian Kluth ◽  
Klaus Bürcky ◽  
Bernward Märländer ◽  
Mark Varrelmann

Rhizoctonia solani (AG 2-2IIIB), causing root and crown rot in sugar beet, poses an increasing problem in Europe. Agronomic measures have to be optimized to control disease and minimize yield and quality loss, because no fungicides can be applied. Resistant sugar beet cultivars have been introduced to reduce disease occurrence. Furthermore, crop rotation can influence R. solani occurrence. In contrast to other cereals, maize serves as a host of the fungus. In order to study the combined effect of these factors, a series of four field trials was established with crop rotations varying in the proportion of maize and comparing a resistant with a susceptible sugar beet cultivar in 2001–02 in southern Germany. Within crop rotations, cultivation methods were varied in the form of soil tillage, intercrops, or both. Sugar beet cultivar and crop rotation had the main impact on disease severity and sugar yield. With increasing proportion of maize, sugar yield decreased, whereas cultivation method had only a minor impact. Plowing directly before sugar beet increased sugar yield only within the unfavorable maize-maize-sugar beet rotation compared with mulching. These results give strong evidence that crop rotation of sugar beet with nonhost plants and cultivation of resistant sugar beet cultivars are adequate means for integrated R. solani control.


Author(s):  
V. Z. Venevtsev ◽  
M. N. Zakharova ◽  
L. V. Rozhkova

The article presents the results of a 3-year test of the herbicides Lontrel Grand, VDG, Piraklid, VDG and Lontrel-300, BP, used to reduce the clogging of sugar beet crops by perennial dicotyledonous root weeds and increase crop yields. In Ryazan region the conditions these malignant plants are found in almost all fields sown with sugar beets, which is particularly vulnerable because being a root crop it cannot seriously compete with weeds. With a strong contamination of the crop by perennial dicotyledonous root shoot weeds its yield may decrease by more than 50%. Tests of drugs were carried out on sugar beet cultivar Ocean sowings on the experimental field of the institute in four replications. The size of the experimental plots is 50 m2. The soil of the experimental plot is dark gray forest heavy loam, the content of humus is 3.8%, pH is 5.8 ... 6.0, the forecrop is winter wheat. The tested herbicides were introduced with the “Agrotop” backpack compression sprayer equipped with a two-meter boom, consumption rate of the working solution was 200 l / ha. Twice sprayed in the phase of cotyledon leaves and 2 - 3 pairs of real leaves of the crop, once – in the phase of 2 - 3 pairs of leaves. The development phase of perennial dicotyledonous offset weeds during the first spraying is the leaf rosette, during the second spraying the length of the sow-thistles and thistles is 10 ... 20 cm. With the level of weediness of the crops by the Cirsium arvense, Sonchus arvensis to 26 pcs / m2 the studied preparations reduced the weediness of the crops of these weeds by 85.0 - 92.0% and increased beet root crops by 2.8 - 4.4 t / ha.


Sign in / Sign up

Export Citation Format

Share Document