scholarly journals Adipose glucocorticoid action influences whole‐body metabolism via modulation of hepatic insulin action

2019 ◽  
Vol 33 (7) ◽  
pp. 8174-8185 ◽  
Author(s):  
Abudukadier Abulizi ◽  
João-Paulo Camporez ◽  
Michael J. Jurczak ◽  
Kasper F. Høyer ◽  
Dongyan Zhang ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Anisha A. Gupte ◽  
Henry J. Pownall ◽  
Dale J. Hamilton

Clinical trials and animal studies have revealed that loss of circulating estrogen induces rapid changes in whole body metabolism, fat distribution, and insulin action. The metabolic effects of estrogen are mediated primarily by its receptor, estrogen receptor-α; however, the detailed understanding of its mechanisms is incomplete. Recent investigations suggest that estrogen receptor-αelicits the metabolic effects of estrogen by genomic, nongenomic, and mitochondrial mechanisms that regulate insulin signaling, substrate oxidation, and energetics. This paper reviews clinical and experimental studies on the mechanisms of estrogen and the current state of knowledge regarding physiological and pathobiological influences of estrogen on metabolism.


2019 ◽  
Vol 133 (22) ◽  
pp. 2317-2327 ◽  
Author(s):  
Nicolás Gómez-Banoy ◽  
James C. Lo

Abstract The growing prevalence of obesity and its related metabolic diseases, mainly Type 2 diabetes (T2D), has increased the interest in adipose tissue (AT) and its role as a principal metabolic orchestrator. Two decades of research have now shown that ATs act as an endocrine organ, secreting soluble factors termed adipocytokines or adipokines. These adipokines play crucial roles in whole-body metabolism with different mechanisms of action largely dependent on the tissue or cell type they are acting on. The pancreatic β cell, a key regulator of glucose metabolism due to its ability to produce and secrete insulin, has been identified as a target for several adipokines. This review will focus on how adipokines affect pancreatic β cell function and their impact on pancreatic β cell survival in disease contexts such as diabetes. Initially, the “classic” adipokines will be discussed, followed by novel secreted adipocyte-specific factors that show therapeutic promise in regulating the adipose–pancreatic β cell axis.


Author(s):  
Anagha Gosavi ◽  
Ram V. Ramekar

Prameha is disease of Mutravaha Srotasa having Kapha dominancy which can be correlated with diabetes mellitus. The term diabetes mellitus describes a metabolic disorder of multiple etiologies characterized by chronic hyperglycemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. Madhumeha is considered as a subtype under the Vatika type of Prameha and it is characterized by passage of urine with sweet taste like honey along with sweetness of whole body. With appropriate use of Ayurvedic preventive measures such as Dincharya, Ritucharya, Aharvidhi and therapeutic measures Madhumeha (DM) can be prevented.


GeroScience ◽  
2021 ◽  
Author(s):  
Haihui Zhuang ◽  
Sira Karvinen ◽  
Timo Törmäkangas ◽  
Xiaobo Zhang ◽  
Xiaowei Ojanen ◽  
...  

AbstractAerobic capacity is a strong predictor of longevity. With aging, aerobic capacity decreases concomitantly with changes in whole body metabolism leading to increased disease risk. To address the role of aerobic capacity, aging, and their interaction on metabolism, we utilized rat models selectively bred for low and high intrinsic aerobic capacity (LCRs/HCRs) and compared the metabolomics of serum, muscle, and white adipose tissue (WAT) at two time points: Young rats were sacrificed at 9 months of age, and old rats were sacrificed at 21 months of age. Targeted and semi-quantitative metabolomics analysis was performed on the ultra-pressure liquid chromatography tandem mass spectrometry (UPLC-MS) platform. The effects of aerobic capacity, aging, and their interaction were studied via regression analysis. Our results showed that high aerobic capacity is associated with an accumulation of isovalerylcarnitine in muscle and serum at rest, which is likely due to more efficient leucine catabolism in muscle. With aging, several amino acids were downregulated in muscle, indicating more efficient amino acid metabolism, whereas in WAT less efficient amino acid metabolism and decreased mitochondrial β-oxidation were observed. Our results further revealed that high aerobic capacity and aging interactively affect lipid metabolism in muscle and WAT, possibly combating unfavorable aging-related changes in whole body metabolism. Our results highlight the significant role of WAT metabolism for healthy aging.


2021 ◽  
Author(s):  
Diana Abu Halaka ◽  
Ofer Gover ◽  
Einat Rauchbach ◽  
Shira Zelber-Sagi ◽  
Betty Schwartz ◽  
...  

Nitrites and nitrates are traditional food additives used as curing agents in the food industry. They inhibit the growth of microorganisms and convey a typical pink color to the meat....


2015 ◽  
Vol 228 (3) ◽  
pp. 127-134 ◽  
Author(s):  
Amanda E Brandon ◽  
Ella Stuart ◽  
Simon J Leslie ◽  
Kyle L Hoehn ◽  
David E James ◽  
...  

An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12–16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42–54 weeks of age, male WT and Acc2−/− mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2−/− mice, aged Acc2−/− mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2−/− mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic–euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2−/− mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action.


1989 ◽  
Vol 66 (2) ◽  
pp. 695-703 ◽  
Author(s):  
K. J. Mikines ◽  
B. Sonne ◽  
P. A. Farrell ◽  
B. Tronier ◽  
H. Galbo

Seven endurance-trained subjects [maximal O2 consumption (VO2max) 64 +/- 1 (SE) ml.min-1.kg-1] were subjected to three sequential hyperinsulinemic euglycemic clamps 15 h after having performed their last training session (T). Results were compared with findings in seven untrained subjects (VO2max 44 +/- 2 ml.min-1.kg-1) studied both at rest (UT) and after 60 min of bicycle exercise at 150 W (UT-ex). In T and UT-ex compared with UT, sensitivity for insulin-mediated whole-body glucose uptake was higher [insulin concentrations eliciting half-maximal glucose uptake being 44 +/- 2 (T) and 43 +/- 4 (UT-ex) vs. 52 +/- 3 microU/ml (UT), P less than 0.05] and responsiveness was higher [13.4 +/- 1.2 (T) and 10.9 +/- 0.7 (UT-ex) vs. 9.5 +/- 0.7 mg.min-1.kg-1 (UT), P less than 0.05]. Furthermore, responsiveness was higher (P less than 0.05) in T than in UT-ex. Insulin-stimulated O2 uptake and maximal glucose oxidation rate were higher in T than in UT and UT-ex. Insulin-stimulated conversion or glucose to glycogen and muscle glycogen synthase was higher in T than in UT and UT-ex. However, glycogen storage in vastus lateralis muscle was found only in UT-ex. No change in any glucoregulatory hormone or metabolite could explain the increased insulin action in trained subjects. It is concluded that physical training induces an adaptive increase in insulin responsiveness of whole-body glucose uptake, which does not reflect increased glycogen deposition in muscle.(ABSTRACT TRUNCATED AT 250 WORDS)


2000 ◽  
Vol 278 (2) ◽  
pp. R453-R459 ◽  
Author(s):  
J. Anthony Peth ◽  
Tyson R. Kinnick ◽  
Erik B. Youngblood ◽  
Hans J. Tritschler ◽  
Erik J. Henriksen

The purpose of this study was to assess the individual and interactive effects of the antioxidant α-lipoic acid (LPA) and the n-6 essential fatty acid γ-linolenic acid (GLA) on insulin action in insulin-resistant obese Zucker rats. LPA, GLA, and a unique conjugate consisting of equimolar parts of LPA and GLA (LPA-GLA) were administered for 14 days at 10, 30, or 50 mg ⋅ kg body wt− 1 ⋅ day− 1. Whereas LPA was without effect at 10 mg/kg, at 30 and 50 mg/kg it elicited 23% reductions ( P < 0.05) in the glucose-insulin index (the product of glucose and insulin areas under the curve during an oral glucose tolerance test and an index of peripheral insulin action) that were associated with significant increases in insulin-mediated (2 mU/ml) glucose transport activity in isolated epitrochlearis (63–65%) and soleus (33–41%) muscles. GLA at 10 and 30 mg/kg caused 21–25% reductions in the glucose-insulin index and 23–35% improvements in insulin-mediated glucose transport in epitrochlearis muscle. The beneficial effects of GLA disappeared at 50 mg/kg. At 10 and 30 mg/kg, the LPA-GLA conjugate elicited 29 and 38% reductions in the glucose-insulin index. These LPA-GLA-induced improvements in whole body insulin action were accompanied by 28–63 and 38–57% increases in insulin-mediated glucose transport in epitrochlearis and soleus muscles and resulted from the additive effects of LPA and GLA. At 50 mg/kg, the metabolic improvements due to LPA-GLA were substantially reduced. In summary, these results indicate that the conjugate of the antioxidant LPA and the n-6 essential fatty acid GLA elicits significant dose-dependent improvements in whole body and skeletal muscle insulin action on glucose disposal in insulin-resistant obese Zucker rats. Moreover, these actions of LPA-GLA are due to the additive effects of its individual components.


Sign in / Sign up

Export Citation Format

Share Document