EFFECT TO TEMPERATURE AND TRAPPED AIR ON MATRIC SUCTION

Soil Science ◽  
1965 ◽  
Vol 100 (4) ◽  
pp. 262-266 ◽  
Author(s):  
R. S. CHAHAL
Keyword(s):  
Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1809
Author(s):  
Yongpeng Nie ◽  
Wankui Ni ◽  
Xiangning Li ◽  
Haiman Wang ◽  
Kangze Yuan ◽  
...  

To better understand and analyze the unsaturated stability of loess filling body, it is necessary to study the changes in suction stress before and after the drying-wetting cycles. In this study, the SWCC of compacted loess before and after drying-wetting cycles was tested using the filter paper method. Then, the suction stress was calculated and the microstructure of the loess sample was determined by the SEM and NMR. The results showed that the drying-wetting cycles had an important influence on the SSCC and microstructure of compacted loess. The change in suction stress before and after the drying-wetting cycles can be well explained by the loess microstructure. The drying-wetting cycles did not significantly change the basic trend of the compacted loess’s SSCC, but it increased the porosity and the dominant pore diameter of loess, and reduced the suction stress under the same matric suction. The main significant change in suction stress with matric suction occurred within the range of the dominant soil pores. The larger the dominant pore diameter, the smaller the suction stress under the same matric suction. In addition, this study proposes a new method for calculating suction stress based on the PSD parameters.


BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chien-Sheng Wang ◽  
Ching-Chia Li ◽  
Wen-Jeng Wu ◽  
Wen-Chin Liou ◽  
Yusen Eason Lin ◽  
...  

Abstract Introduction Air pockets between the lithotripter head and body surface are almost inevitably generated when applying a handful of gel onto the contact portion of the treatment head and that on the patient’s skin during coupling procedure. These air pockets can compromise the transmission of acoustic energy of shock wave and may significantly affect efficacy of stone disintegration. Comparing to conventional gel, this study aims to investigate efficacy of stone disintegration by using a proprietary isolation-coupling pad (“icPad”) as the coupling medium to reduce trapped air pockets during ESWL procedure. Method In this phantom study, Dornier lithotripter (Delta-2 RC, Dornier MedTech Europe GmbH Co., Germany) was used with a proprietary gel pads (icPad, Diameter = 150 mm, Thickness = 4 mm and 8 mm). The lithotripter was equipped with inline camera to observe the trapped air pockets between the contact surface of the lithotripter head. A testing and measuring device were used to observe experimental stone disintegration using icPad and semi-liquid gel. The conventional semi-liquid gel was used as control for result comparison. Results The stone disintegration rate of icPad 4 mm and 8 mm after 200 shocks of energy at level 2 were significantly higher than that of the semi-liquid gel (disintegration rate 92.3%, 85.0% vs. 45.5%, respectively, p < 0.001). The number of shocks for complete stone disintegration by icPad of 4 mm and 8 mm at the same energy level 2 were significantly lower than that of the semi-liquid gel (the number of shocks 242.0 ± 13.8, 248.7 ± 6.3 vs. 351.0 ± 54.6, respectively, p = 0.011). Furthermore, quantitative comparison of observed air pockets under Optical Coupling Control (OCC) system showed that the area of air pockets in semi-liquid group was significantly larger than that of the group using icPad (8 mm) and that of the group using icPad (8 mm) after sliding (332.7 ± 91.2 vs. 50.3 ± 31.9, 120.3 ± 21.5, respectively, p < 0.05). Conclusion The advantages of icPad includes: (1) reduced the numbers of shock wave and increased stone disintegration rate due to icPad’s superior efficacy; (2) significantly reduce trapped air pockets in ESWL coupling. Due to the study limitation, more data are needed to confirm our observations before human trials.


2021 ◽  
pp. 146808742110366
Author(s):  
Fukang Ma ◽  
Wei Yang ◽  
Yifang Wang ◽  
Junfeng Xu ◽  
Yufeng Li

The scavenging process of two stroke engine includes free exhaust, scavenging, and post intake process, which clears the burned gas in cylinder and suctions the fresh air for next cycle. The gas exchange process of Opposed-Piston Two-Stroke (OP2S) engine with gasoline direct injection (GDI) engine is a uniflow scavenging method between intake port and exhaust port. In order to investigate the characteristics of the gas exchange process in OP2S-GDI engine, a specific tracer gas method (TGM) was developed and the experiments were carried out to analyze the gas exchange performance under different intake and exhaust conditions and opposed-piston movement rule. The results show that gas exchange performance and trapped gas mass are significantly influenced by intake pressure and exhaust pressure. And it has a positive effect on the scavenging efficiency and the trapped air mass. Scavenging efficiency and trapped air mass are almost independent of pressure drop when the delivery ratio exceeds 1.4. Consequently, the delivery ratio ranges from 0.5 to 1.4 is chosen to achieve an optimization of steady running and minimum pump loss. The opposed piston motion phase difference only affects the scavenging timing. Scavenging performance is mainly influenced by scavenging timing and scavenging duration. With the increased phase difference of piston motion, the scavenging efficiency and delivery ratio increased gradually, the trapping efficiency would increase first and decrease then and reaches its maximum at 14°CA.


2021 ◽  
Vol 135 ◽  
pp. 104145
Author(s):  
Longxiao Guo ◽  
Guangqi Chen ◽  
Shilin Gong ◽  
Hao Sun ◽  
Krisadawat Chantat
Keyword(s):  

Author(s):  
Deborah J. Wood ◽  
D. Howell Peregrine ◽  
Tom Bruce

2011 ◽  
Vol 261-263 ◽  
pp. 989-993 ◽  
Author(s):  
Anuchit Uchaipichat ◽  
Ekachai Man Koksung

An experimental program of laboratory bearing tests was performed to characterize the bearing capacity of foundation on unsaturated granular soils. All tests were performed by pushing a circular rod on the surface of compacted sand specimens with different values of matric suction until failure. The test results show an increase in ultimate bearing capacity with increasing matric suction at low suction value but a decrease in that at high level of suction. The comparisons between the test results and simulations using the expressions proposed in this paper are presented and discussed. Good agreements are achieved for all testing values of suction.


Author(s):  
Yuanxin Zhou ◽  
Shaik Jeelani

In this study, a high-intensity ultrasonic liquid processor was used to obtain a homogeneous molecular mixture of epoxy resin and carbon nano fiber. The carbon nano fibers were infused into the part A of SC-15 (diglycidylether of Bisphenol A) through sonic cavitations and then mixed with part B of SC-15 (cycloaliphatic amine hardener) using a high-speed mechanical agitator. The trapped air and reaction volatiles were removed from the mixture using high vacuum. Nanophased epoxy with 2 wt.% CNF was then utilized in a vacuum assisted resin transfer molding (VARTM) set up with carbon fabric to fabricate laminated composites. The effectiveness of CNF addition on matrix dominated properties of composites has been evaluated by compression, open hole compression and inter-laminar shear. The compression strength, open hole compression strength and ILS were improved by 21%, 23% and 15%, respectively as compared to the neat composite.


2010 ◽  
Vol 47 (10) ◽  
pp. 1112-1126 ◽  
Author(s):  
Md. Akhtar Hossain ◽  
Jian-Hua Yin

Shear strength and dilative characteristics of a re-compacted completely decomposed granite (CDG) soil are studied by performing a series of single-stage consolidated drained direct shear tests under different matric suctions and net normal stresses. The axis-translation technique is applied to control the pore-water and pore-air pressures. A soil-water retention curve (SWRC) is obtained for the CDG soil from the equilibrium water content corresponding to each applied matric suction value for zero net normal stress using a modified direct shear apparatus. Shear strength increases with matric suction and net normal stress, and the failure envelope is observed to be linear. The apparent angle of internal friction and cohesion intercept increase with matric suction. A greater dilation angle is found at higher suctions with lower net normal stresses, while lower or zero dilation angles are observed under higher net normal stresses with lower suctions, also at a saturated condition. Experimental shear strength data are compared with the analytical shear strength results obtained from a previously modified model considering the SWRC, effective shear strength parameters, and analytical dilation angles. The experimental shear strength data are slightly higher than the analytical results under higher net normal stresses in a higher suction range.


Sign in / Sign up

Export Citation Format

Share Document