Curcumin Induces Cross-Regulation Between Autophagy and Apoptosis in Uterine Leiomyosarcoma Cells

2013 ◽  
Vol 23 (5) ◽  
pp. 803-808 ◽  
Author(s):  
Bin Li ◽  
Takashi Takeda ◽  
Kenji Tsuiji ◽  
Tze Fang Wong ◽  
Mari Tadakawa ◽  
...  

ObjectiveUterine leiomyosarcoma (LMS) has an unfavorable response to standard chemotherapy. A natural occurring compound, curcumin, has been shown to have inhibitory effects on cancers. We previously demonstrated that curcumin reduced uterine LMS cell proliferation by targeting the AKT-mTOR pathway and activating apoptosis. To further explore the anticancer effect of curcumin, we investigated the efficacy of curcumin on autophagy in LMS cells.MethodsCell proliferation in human uterine LMS cell lines, SKN and SK-UT-1, was assessed after exposure to rapamycin or curcumin. Autophagy was detected by Western blotting for light chain 3 and sequestosome 1 (SQSTM1/p62) expression. Apoptosis was confirmed by Western blotting for cleaved poly (ADP-ribose) polymerase (PARP).ResultsBoth rapamycin and curcumin potently inhibited SKN and SK-UT-1 cell proliferation in a dose-dependent manner. Curcumin induced autophagy and apoptosis in SKN and SK-UT-1 cells, whereas rapamycin, a specific mTOR inhibitor, did not. Curcumin increased extracellular signal-regulated kinase 1/2 activity in both SKN and SK-UT-1 cells, whereas PD98059, an MEK1 inhibitor, inhibited both the extracellular signal-regulated kinase 1/2 pathway and curcumin-induced autophagy.ConclusionsThese experimental findings suggest that curcumin is a potent inhibitor of cell proliferation in uterine LMS and provide new insights about ongoing signaling events leading to the possible development of a new therapeutic agent.

2012 ◽  
Vol 302 (3) ◽  
pp. R340-R351 ◽  
Author(s):  
Catarina Soares Potes ◽  
Christina Neuner Boyle ◽  
Peter John Wookey ◽  
Thomas Riediger ◽  
Thomas Alexander Lutz

Peripheral amylin inhibits eating via the area postrema (AP). Because amylin activates the extracellular-signal regulated kinase 1/2 (ERK) pathway in some tissues, and because ERK1/2 phosphorylation (pERK) leads to acute neuronal responses, we postulated that it may be involved in amylin's eating inhibitory effect. Amylin-induced ERK phosphorylation (pERK) was investigated by immunohistochemistry in brain sections containing the AP. pERK-positive AP neurons were double-stained for the calcitonin 1a/b receptor, which is part of the functional amylin-receptor. AP sections were also phenotyped using dopamine-β-hydroxylase (DBH) as a marker of noradrenergic neurons. The effect of fourth ventricular administration of the ERK cascade blocker U0126 on amylin's eating inhibitory action was tested in feeding trials. The number of pERK-positive neurons in the AP was highest ∼10–15 min after amylin treatment; the effect appeared to be dose-dependent (5–20 μg/kg amylin). A portion of pERK-positive neurons in the AP carried the amylin-receptor and 22% of the pERK-positive neurons were noradrenergic. Pretreatment of rats with U0126 decreased the number of pERK-positive neurons in the AP after amylin injection. U0126 also attenuated the ability of amylin to reduce eating, at least when the animals had been fasted 24 h prior to the feeding trial. Overall, our results suggest that amylin directly stimulates pERK in AP neurons in a time- and dose-dependent manner. Part of the AP neurons displaying pERK were noradrenergic. At least under fasting conditions, pERK was shown to be a necessary part in the signaling cascade mediating amylin's anorectic effect.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Fu-Chao Liu ◽  
Hung-Chen Lee ◽  
Chia-Chih Liao ◽  
Allen H. Li ◽  
Huang-Ping Yu

Objectives. To investigate the protective effects of tropisetron on acetaminophen- (APAP-) induced liver injury in a mice model.Methods. C57BL/6 male mice were given tropisetron (0.3 to 10 mg/kg) 30 minutes before a hepatotoxic dose of acetaminophen (300 mg/kg) intraperitoneally. Twenty hours after APAP intoxication, sera alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, hepatic myeloperoxidase (MPO), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) activities, and liver histopathological changes were examined. The MAP kinases were also detected by western blotting.Results. Our results showed that tropisetron pretreatment significantly attenuated the acute elevations of the liver enzyme ALT level, hepatic MPO activity, and hepatocytes necrosis in a dose-dependent manner (0.3–10 mg/kg) in APAP-induced hepatotoxicity mice. Tropisetron (1 and 3 mg/kg) suppressed APAP-induced hepatic lipid peroxidation expression and alleviated GSH and SOD depletion. Administration of tropisetron also attenuated the phosphorylation of c-Jun-NH2-terminal protein kinase (JNK) and extracellular signal-regulated kinase (ERK) caused by APAP.Conclusion. Our data demonstrated that tropisetron’s hepatoprotective effect was in part correlated with the antioxidant, which were mediated via JNK and ERK pathways on acetaminophen-induced liver injury in mice.


2021 ◽  
Author(s):  
Yasuhisa Noguchi ◽  
Takehisa Suzuki ◽  
Keigo Matsutani ◽  
Ryota Nakahigashi ◽  
Yoshiki Satake ◽  
...  

Toxic puffers contain the potent neurotoxin, tetrodotoxin (TTX). Although TTX is considered to serve as a defense substance, previous behavioral studies have demonstrated that TTX (extracted from the ovary) acts as an attractive pheromone for some toxic puffers. To determine the putative pheromonal action of TTX, we examined whether grass puffers (Takifugu alboplumbeus) can detect TTX using electrophysiological, morphological, and behavioral experiments. Electroolfactogram results suggest that the olfactory epithelium of grass puffers responded in a dose-dependent manner to a type of TTX analog (5,6,11-trideoxyTTX), although it did not respond to TTX. We also examined the attractive action of 5,6,11-trideoxyTTX on grass puffers by recording their swimming behavior under dark conditions. Grass puffers preferred to stay on the side of the aquarium where 5,6,11-trideoxyTTX was administered, and their swimming speed decreased. Additionally, odorant-induced labeling of olfactory sensory neurons using a fluorescent dextran conjugate or immunohistochemistry against phosphorylated extracellular signal regulated kinase (pERK) revealed that labeled olfactory sensory neurons were localized in the region surrounding "islets" where there was abundant cilia on the olfactory lamella. 5,6,11-trideoxyTTX has been known to accumulate in grass puffers, but its toxicity is much lower (almost nontoxic) than TTX. Our results suggest that grass puffers can detect 5,6,11-trideoxyTTX using their nose and may positively use this functionally unknown TTX analog as an olfactory chemoattractant.


2014 ◽  
Vol 887-888 ◽  
pp. 592-595 ◽  
Author(s):  
Ya Wei Li ◽  
Dan Wang ◽  
Xiao Guang Li ◽  
Ying Jin

Recently studies have demonstrated that anthocyanins from blueberry have anticancer effects. Here, HepG2 cells were treated with anthocyanins (200、400、600、800 and 1000 μg/ml) for 48h, the effects on cell proliferation and apoptosis were investigated. The results suggested that anthocyanins can inhibit the proliferation of HepG2 cells in a dose-dependent manner. The activity of caspase-3 was increased in the anthocyanins treatment group. Moreover, results of Western blotting shown that the expression of Caspase-3 protein increased significantly in the treatment group. Taken together, our data suggest that anthocyanins could be developed as an agent against liver cancer.


2018 ◽  
Vol 13 (8) ◽  
pp. 1934578X1801300
Author(s):  
Jung-Hee Byeon ◽  
Md Badrul Alam ◽  
Ki-Chan Kim ◽  
Sangsun Heo ◽  
Ji-young Lim ◽  
...  

Melanin has been reported to be the key factor for skin homeostasis. Besides defining an important human phenotypic trait, melanin overproduction may cause various disorders such as vitiligo, Addison's disease, Cushing's syndrome, and melasma. In this study, we aimed to investigate the anti-melanogenic potential of dried spike extract of chestnut. The extract inhibited tyrosinase (TYR) activity in a dose-dependent manner. Cellular melanin content decreased markedly after treatment with the extract. The spike extract inhibited microphthalmia-associated transcription factor (MITF) expression and downregulated TYR, TYRP-1, and TYRP-2 protein expression by increasing the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 signalling pathway in melan-a cells. In addition, treatment with U0126, a specific inhibitor of ERK, restored melanin content. Collectively, these results suggest that the chestnut spike extract attenuated melanogenesis by inhibiting MITF expression and downregulating TYR, TYRP-1, and TYRP-2 protein expressions via activation of ERK1/2 pathway.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 13-15
Author(s):  
Shunfeng Hu ◽  
Xiangxiang Zhou ◽  
Juan Yang ◽  
Shuai Ren ◽  
Yiqing Cai ◽  
...  

Introduction: Prostaglandin D2 Synthase (PTGDS), a member of lipocalin superfamily, plays a dual role in catalyzing the conversion of PGH2 to PGD2 and transporting lipophilic substances. PTGDS protein is with different degrees of glycosylation. AT56 is a selective, competitive, and highly bioavailable inhibitor of PTGDS. However, the function and mechanism of PTGDS in diffuse large B-cell lymphoma (DLBCL) remains ill defined. Herein, we aimed to investigate the functional significance of PTGDS and proposed a novel therapeutic strategy for DLBCL. Methods: Lymph node biopsies from 53 de novo DLBCL patients and 28 reactive hyperplasia cases, and peripheral blood mononuclear cells (PBMCs) from healthy volunteers were collected with informed consents. CD19+ B cells were purified by CD19+ magnetic microbeads. The expression levels of PTGDS in DLBCL cell lines and serum were detected by western blotting and ELISA, respectively. Lentivirus vectors were transfected to stably knockdown or overexpress PTGDS. After the treatment of Tunicamycin (Tun), an N-glycosylation inhibitor, western blotting and immunofluorescence were performed to validate the molecular weight and location of PTGDS protein. Results: We first evaluated the expression of PTGDS in DLBCL. Upregulation of PTGDS mRNA in DLBCL cells was identified based on Oncomine database (Fig.1A). Then, the expression level of PTGDS protein in tumor tissue (n=53) was validated to be higher in comparison with control group (Fig.1B). Furthermore, survival analysis revealed that PTGDS high expression was associated with reduced overall survival of DLBCL patients (Fig.1C). Moreover, high level of soluble PTGDS protein was detected in the serum of DLBCL patients (n=53, Fig.1D). High expression of PTGDS was also confirmed in DLBCL cells by western blotting (Fig.2A). The biological function of PTGDS in progression of DLBCL was further verified. Gene ontology and KEGG analysis revealed that PTGDS was enriched in cellular process and biological regulation (Fig.2B). After the treatment with rhPTGDS, increased proliferation of DLBCL cell was observed in a dose-dependent manner (Fig.2D), and overexpression of PTGDS also promoted cell growth (Fig.2E). Furthermore, knockdown of PTGDS (shPTGDS) significantly restrained cell proliferation (Fig.2F), promoted cell cycle arrest (Fig.2G) and cell apoptosis (Fig.2H). AT56 suppressed the proliferation of DLBCL cells in a dose- and time-dependent manner (Fig. 3A). Additionally, with the treatment of AT56, DLBCL cells exhibited induced G0/G1 phase arrest (Fig. 3B) and increased cell apoptosis (Fig. 3C). As Bendamustine and Adriamycin were found to decrease the mRNA level of PTGDS (Fig. 3D), we further observed that AT56 enhanced sensitivity to them in cell proliferation (Fig. 3E) and cell apoptosis (Fig. 3F). Next, we explored the underlying mechanism of PTGDS in DLBCL progression. The expression of Wnt pathway molecules, such as p-LRP6, β-catenin, p-GSK3-β, Lef-1, p-STAT3, were decreased with treatment of AT56 in dose-dependent manner (Fig. 4A). Besides, STAT3 inhibitor WP1066 was found to restore the proliferation promotion (Fig. 4B) caused by PTGDS overexpression. Moreover, we validated that Wnt pathway activator Wnt3a could restore the phenotype changes caused by AT56, including cell proliferation (Fig. 4C), cell apoptosis (Fig. 4D) and cell cycle (Fig. 4E). Glycosylation, a kind of post-translational modification, could significantly alter protein function and then cellular characteristics. Protein Blast analysis indicated the potential glycosylation sites (Fig. 5A) on PTGDS protein (Ser29, Asn51 and Asn78). Furthermore, Tunicamycin was used to inhibit the N-glycosylation of protein and molecular weight of PTGDS changed from 37kD to 21kD (Fig.5B). Besides, the deglycosylation could promote the translocation of PTGDS into the nucleus (Fig.5C-D), indicating the potential role of glycosylated PTGDS in DLBCL. Conclusions : Our investigations identified for the first time the aberrant overexpression of PTGDS in DLBCL, which was associated with poor prognosis. AT56 exerted anti-tumor effect via inhibiting Wnt pathway. Besides, PTGDS protein in DLBCL cells were highly glycosylated and deglycosylation promoted its translocation into nucleus, indicating the mechanism of PTGDS in DLBCL. Further investigation is warranted to substantiate PTGDS as a promising therapeutic target in DLBCL. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Chunyan Li ◽  
Fen Wang ◽  
Anli Tong ◽  
Zhaoli Yan ◽  
Yuxiu Li

Abstract Background: The evidence about effects of metformin on adrenocortical carcinoma cell lines is lacking. This study aims to investigate the effects of metformin on proliferation and secretion function of H295R cells.Methods: H295R cells were treated with different doses of metformin for 3 days or with 20 mmol/L metformin for different times. Cell proliferation was detected by MTS method. Cortisol and aldosterone in culture medium was determined by chemiluminescent method and radioimmunoassay, respectively. H295R cells were treated with 20 mmol/L metformin for 24 hours, and mRNA expressions of 11 beta-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) were detected by real-time quantitative PCR.Results: The results showed that no differences of cell proliferation and secretion of cortisol and aldosterone were detected between control group and metformin group with doses less than 5 mmol/L. Metformin with large doses (≥ 10 mmol/L) significantly inhibited cell proliferation and secretion of cortisol and aldosterone in a dose-dependent pattern. Metformin (20 mmol/L) inhibited cell proliferation after 12 hours’ incubation. And the proliferation inhibitory effects of metformin were in a time-dependent manner. Compared with control group, metformin decreased secretion of cortisol and aldosterone, and mRNA expression of CYP11B1.Conclusions: Metformin can inhibit cell proliferation and secretion of cortisol and aldosterone in H295R cells.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 712
Author(s):  
Yun-Zheng Le ◽  
Bei Xu ◽  
Ana J. Chucair-Elliott ◽  
Huiru Zhang ◽  
Meili Zhu

To investigate the mechanism of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) in Müller cell (MC) viability and neuroprotection in diabetic retinopathy (DR), we examined the role of VEGF in MC viability and BDNF production, and the effect of BDNF on MC viability under diabetic conditions. Mouse primary MCs and cells of a rat MC line, rMC1, were used in investigating MC viability and BDNF production under diabetic conditions. VEGF-stimulated BDNF production was confirmed in mice. The mechanism of BDNF-mediated MC viability was examined using siRNA knockdown. Under diabetic conditions, recombinant VEGF (rVEGF) stimulated MC viability and BDNF production in a dose-dependent manner. rBDNF also supported MC viability in a dose-dependent manner. Targeting BDNF receptor tropomyosin receptor kinase B (TRK-B) with siRNA knockdown substantially downregulated the activated (phosphorylated) form of serine/threonine-specific protein kinase (AKT) and extracellular signal-regulated kinase (ERK), classical survival and proliferation mediators. Finally, the loss of MC viability in TrkB siRNA transfected cells under diabetic conditions was rescued by rBDNF. Our results provide direct evidence that VEGF is a positive regulator for BDNF production in diabetes for the first time. This information is essential for developing BDNF-mediated neuroprotection in DR and hypoxic retinal diseases, and for improving anti-VEGF treatment for these blood–retina barrier disorders, in which VEGF is a major therapeutic target for vascular abnormalities.


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Yunjeong Gwon ◽  
Jisun Oh ◽  
Jong-Sang Kim

AbstractSulforaphane is a well-known phytochemical that stimulates nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant cellular response. In this study, we found that sulforaphane promoted cell proliferation in HCT116 human colon cancer cells expressing a normal p53 gene in a dose-dependent but biphasic manner. Since p53 has been reported to contribute to cell survival by regulating various metabolic pathways to adapt to mild stress, we further examined cellular responses in both p53-wild-type (WT) and p53-knockout (KO) HCT116 cells exposed to sulforaphane in vitro and in vivo. Results demonstrated that sulforaphane treatment activated Nrf2-mediated antioxidant enzymes in both p53-WT and p53-KO cells, decreased apoptotic protein expression in WT cells but increased in KO cells in a dose-dependent manner, and increased the expression of a mitochondrial biogenesis marker PGC1α in WT cells but decreased in KO cells. Moreover, a low dose of sulforaphane promoted tumor growth, upregulated the Nrf2 signaling pathway, and decreased apoptotic cell death in p53-WT HCT116 xenografts compared to that in p53-KO HCT116 xenografts in BALB/c nude mice. These findings suggest that sulforaphane can influence colon cancer cell proliferation and mitochondrial function through a crosstalk between the Nrf2 signaling pathway and p53 axis.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2178
Author(s):  
Fabio Morandi ◽  
Veronica Bensa ◽  
Enzo Calarco ◽  
Fabio Pastorino ◽  
Patrizia Perri ◽  
...  

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


Sign in / Sign up

Export Citation Format

Share Document