scholarly journals Tropical bird species have less variable body sizes

2018 ◽  
Vol 14 (1) ◽  
pp. 20170453 ◽  
Author(s):  
Quentin D. Read ◽  
Benjamin Baiser ◽  
John M. Grady ◽  
Phoebe L. Zarnetske ◽  
Sydne Record ◽  
...  

Ecologists have often predicted that species' niche breadths should decline towards the Equator. Dan Janzen arrived at this prediction based on climatic constraints, while Robert MacArthur argued that a latitudinal gradient in resource specialization drives the pattern. This idea has some support when it comes to thermal niches, but has rarely been explored for other niche dimensions. Body size is linked to niche dimensions related to diet, competition and environmental tolerance in vertebrates. We identified 68 pairs of tropical and nontropical sister bird species using a comprehensive phylogeny and used the VertNet specimen database to ask whether tropical birds have lower intraspecific body-size variation than their nontropical sister species. Our results show that tropical species have less intraspecific variability in body mass ( ; p = 0.009). Variation in body-size variability was poorly explained by both abiotic and biotic drivers; thus the mechanisms underlying the pattern are still unclear. The lower variation in body size of tropical bird species may have evolved in response to more stable climates and resource environments.

Insects ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 433
Author(s):  
Mateusz Okrutniak ◽  
Bartosz Rom ◽  
Filip Turza ◽  
Irena M. Grześ

The association between the division of labour and worker body size of ants is typical for species that maintain physical castes. Some studies showed that this phenomenon can be also observed in the absence of distinct morphological subcastes among workers. However, the general and consistent patterns in the size-based division of labour in monomorphic ants are largely unidentified. In this study, we performed a field experiment to investigate the link between worker body size and the division of labour of the ant Lasius niger (Linnaeus, 1758), which displays limited worker size variation. We demonstrated that the body size of workers exploring tuna baits is slightly but significantly smaller than the size of workers located in the upper parts of the nest. Comparing the present results with existing studies, large workers do not seem to be dedicated to work outside the nest. We suggest that monomorphic workers of certain body sizes are flexible in the choice of task they perform, and food type may be the important determinant of this choice.


2009 ◽  
Vol 276 (1661) ◽  
pp. 1469-1476 ◽  
Author(s):  
Shai Meiri ◽  
Tamar Dayan ◽  
Daniel Simberloff ◽  
Richard Grenyer

Evolutionary biologists have long been fascinated by both the ways in which species respond to ecological conditions at the edges of their geographic ranges and the way that species' body sizes evolve across their ranges. Surprisingly, though, the relationship between these two phenomena is rarely studied. Here, we examine whether carnivore body size changes from the interior of their geographic range towards the range edges. We find that within species, body size often varies strongly with distance from the range edge. However, there is no general tendency across species for size to be either larger or smaller towards the edge. There is some evidence that the smallest guild members increase in size towards their range edges, but results for the largest guild members are equivocal. Whether individuals vary in relation to the distance from the range edges often depends on the way edge and interior are defined. Neither geographic range size nor absolute body size influences the tendency of size to vary with distance from the range edge. Therefore, we suggest that the frequent significant association between body size and the position of individuals along the edge-core continuum reflects the prevalence of geographic size variation and that the distance to range edge per se does not influence size evolution in a consistent way.


2017 ◽  
Vol 67 (3-4) ◽  
pp. 239-249 ◽  
Author(s):  
Yuleimis T. Martínez-Caballero ◽  
Brian C. Bock ◽  
Isabel Pérez ◽  
Ángela M. Ortega-León ◽  
Vivian P. Páez

Large initial body size and rapid early growth rate are important in many species, both because predation rates decline as individuals grow and because females that attain a larger adult body size are more fecund. To identify possible factors contributing to size and growth rate variation in hatchling green iguanas, we artificially incubated six clutches at three constant temperatures to test for effects of incubation temperature and/or clutch effects on initial size and growth rate. Higher incubation temperatures resulted in significantly shorter incubation periods but did not influence initial body size. There were significant differences among clutches in egg size, and also in initial hatchling body size, even after correcting for differences in egg size among clutches. A subset of hatchlings from each nest was reared in semi-natural conditions for four months, with individuals from the high incubation temperature condition exhibiting the slowest longer-term growth rates. No clutch effects were detected in the growth rate analyses. The observed variation in early growth rate of juvenile iguanas seems to be selectively important and this variation may be due in part to the conditions the eggs experience during incubation, but clutch effects in this study were limited to egg size and initial hatchling body size variation, but were not found for subsequent growth rates.


Author(s):  
Bruce Woodward ◽  
Sandra Mitchell

We visited Grand Teton National Park in May, June and July 1991 to begin research on species interactions in shallow montane ponds. Our primary interests were in how body size variation influences species interactions, and how temperature influences body size and thus species interactions. Our goal in the first year was to explore the extant variation in temperature regimes and body sizes of potentially interacting species, and examine some of these species interactions.


Author(s):  
Tadashi Shinohara ◽  
Yasuoki Takami

Abstract The prey preference of a predator can impose natural selection on prey phenotypes, including body size. Despite evidence that large body size protects against predation in insects, the determinants of body size variation in Cassidinae leaf beetles are not well understood. We examined the prey preference of the digger wasp Cerceris albofasciata, a specialist predator of adult Cassidinae leaf beetles, and found evidence for natural selection on prey body size. The wasp hunted prey smaller than the size of their nest entrance. However, the wasp preferred larger prey species among those that could be carried into their nest. Thus, the benefits of large prey and the cost associated with nest expansion might determine the prey size preference. As expected from the prey species preference, the wasp preferred small individuals of the largest prey species, Thlaspida biramosa, and large individuals of the smallest prey species, Cassida piperata, resulting in natural selection on body sizes. In intermediate-sized prey species, however, there was no evidence for selection on body size. Natural selection on body size might explain the variation of prey morphologies that increase body size, such as explanate margins, in this group.


Oecologia ◽  
2015 ◽  
Vol 180 (1) ◽  
pp. 127-136 ◽  
Author(s):  
Frank Cézilly ◽  
Aurélie Quinard ◽  
Sébastien Motreuil ◽  
Roger Pradel

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2682 ◽  
Author(s):  
István Mikó ◽  
Carolyn Trietsch ◽  
Emily L. Sandall ◽  
Matthew Jon Yoder ◽  
Heather Hines ◽  
...  

We revise the genusConostigmus Dahlbom1858 occurring in Madagascar, based on data from more specimens than were examined for the latest world revision of the genus. Our results yield new information about intraspecific variability and the nature of the atypical latitudinal diversity gradient (LDG) observed in Ceraphronoidea. We also investigate cellular processes that underlie body size polyphenism, by utilizing the correspondence between epidermal cells and scutes, polygonal units of leather-like microsculpture. Our results reveal that body size polyphenism in Megaspilidae is most likely related to cell number and not cell size variation, and that cell size differs between epithelial fields of the head and that of the mesosoma. Three species,Conostigmus ballescoracasDessart, 1997,C. babaiaxDessart, 1996 andC. longulusDessart, 1997, are redescribed. Females ofC. longulusare described for the first time, as are nine new species:C. bucephalusMikó and Trietsch sp. nov.,C. clavatusMikó and Trietsch sp. nov.,C. fianarantsoaensisMikó and Trietsch sp. nov.,C. lucidusMikó and Trietsch sp. nov.,C. macrocupula, Mikó and Trietsch sp. nov.,C. madagascariensisMikó and Trietsch sp. nov.,C. missyhazenaeMikó and Trietsch sp. nov.,C. pseudobabaiaxMikó and Trietsch sp. nov., andC. toliaraensisMikó and Trietsch sp. nov. A fully illustrated identification key forMalagasy Conostigmusspecies and a Web Ontology Language (OWL) representation of the taxonomic treatment, including specimen data, nomenclature, and phenotype descriptions, in both natural and formal languages, are provided.


2009 ◽  
Vol 276 (1665) ◽  
pp. 2209-2215 ◽  
Author(s):  
Craig R. McClain ◽  
Alison G. Boyer

Body size variation across the Metazoa is immense, encompassing 17 orders of magnitude in biovolume. Factors driving this extreme diversification in size and the consequences of size variation for biological processes remain poorly resolved. Species diversity is invoked as both a predictor and a result of size variation, and theory predicts a strong correlation between the two. However, evidence has been presented both supporting and contradicting such a relationship. Here, we use a new comprehensive dataset for maximum and minimum body sizes across all metazoan phyla to show that species diversity is strongly correlated with minimum size, maximum size and consequently intra-phylum variation. Similar patterns are also observed within birds and mammals. The observations point to several fundamental linkages between species diversification and body size variation through the evolution of animal life.


2011 ◽  
Vol 7 (4) ◽  
pp. 558-561 ◽  
Author(s):  
Alexander L. Jaffe ◽  
Graham J. Slater ◽  
Michael E. Alfaro

Extant chelonians (turtles and tortoises) span almost four orders of magnitude of body size, including the startling examples of gigantism seen in the tortoises of the Galapagos and Seychelles islands. However, the evolutionary determinants of size diversity in chelonians are poorly understood. We present a comparative analysis of body size evolution in turtles and tortoises within a phylogenetic framework. Our results reveal a pronounced relationship between habitat and optimal body size in chelonians. We found strong evidence for separate, larger optimal body sizes for sea turtles and island tortoises, the latter showing support for the rule of island gigantism in non-mammalian amniotes. Optimal sizes for freshwater and mainland terrestrial turtles are similar and smaller, although the range of body size variation in these forms is qualitatively greater. The greater number of potential niches in freshwater and terrestrial environments may mean that body size relationships are more complicated in these habitats.


2017 ◽  
Vol 4 (11) ◽  
pp. 171339 ◽  
Author(s):  
Manuel Will ◽  
Adrián Pablos ◽  
Jay T. Stock

Body size is a central determinant of a species' biology and adaptive strategy, but the number of reliable estimates of hominin body mass and stature have been insufficient to determine long-term patterns and subtle interactions in these size components within our lineage. Here, we analyse 254 body mass and 204 stature estimates from a total of 311 hominin specimens dating from 4.4 Ma to the Holocene using multi-level chronological and taxonomic analytical categories. The results demonstrate complex temporal patterns of body size variation with phases of relative stasis intermitted by periods of rapid increases. The observed trajectories could result from punctuated increases at speciation events, but also differential proliferation of large-bodied taxa or the extinction of small-bodied populations. Combined taxonomic and temporal analyses show that in relation to australopithecines, early Homo is characterized by significantly larger average body mass and stature but retains considerable diversity, including small body sizes. Within later Homo , stature and body mass evolution follow different trajectories: average modern stature is maintained from ca 1.6 Ma, while consistently higher body masses are not established until the Middle Pleistocene at ca 0.5–0.4 Ma, likely caused by directional selection related to colonizing higher latitudes. Selection against small-bodied individuals (less than 40 kg; less than 140 cm) after 1.4 Ma is associated with a decrease in relative size variability in later Homo species compared with earlier Homo and australopithecines. The isolated small-bodied individuals of Homo naledi ( ca 0.3 Ma) and Homo floresiensis ( ca 100–60 ka) constitute important exceptions to these general patterns, adding further layers of complexity to the evolution of body size within the genus Homo . At the end of the Late Pleistocene and Holocene, body size in Homo sapiens declines on average, but also extends to lower limits not seen in comparable frequency since early Homo .


Sign in / Sign up

Export Citation Format

Share Document