scholarly journals Fish responses to flow velocity and turbulence in relation to size, sex and parasite load

2014 ◽  
Vol 11 (91) ◽  
pp. 20130814 ◽  
Author(s):  
F. A. Hockley ◽  
C. A. M. E. Wilson ◽  
A. Brew ◽  
J. Cable

Riverine fish are subjected to heterogeneous flow velocities and turbulence and may use this to their advantage by selecting regions that balance energy expenditure for station holding while maximizing energy gain through feeding opportunities. This study investigated microhabitat selection by guppies Poecilia reticulata in terms of flow characteristics generated by hemisphere boulders in an open channel flume. Velocity and turbulence influenced the variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the areas of high-velocity and low-turbulence regions beside the boulders, whereas smaller guppies frequented the low-velocity and high-turbulence regions directly behind the boulders. Male guppies selected the regions of low velocity, indicating possible reduced swimming ability owing to hydrodynamic drag imposed by their fins. With increasing Gyrodactylus turnbulli burden, fish spent more time in regions with moderate velocity and lowest turbulent kinetic energy which were the most spatially and temporally homogeneous in terms of velocity and turbulence. These findings highlight the importance of heterogeneous flow conditions in river channel design owing to the behavioural variability within a species in response to velocity and turbulence.

1994 ◽  
Vol 86 (5) ◽  
pp. 557-565 ◽  
Author(s):  
Margaret M. Ramsay ◽  
Fiona Broughton Pipkin ◽  
Peter C. Rubin ◽  
Robert Skidmore

1. Doppler recordings were made from the brachial artery of healthy female subjects during a series of manoeuvres which altered the pressure—flow characteristics of the vessel. 2. Changes were induced in the peripheral circulation of the forearm by the application of heat or icepacks. A sphygmomanometer cuff was used to create graded occlusion of the vessel above and below the point of measurement. Recordings were also made whilst the subjects performed a standardized Valsalva manoeuvre. 3. The Doppler recordings were analysed both with the standard waveform indices (systolic/diastolic ratio, pulsatility index and resistance index) and by the method of Laplace transform analysis. 4. The waveform parameters obtained by Laplace transform analysis distinguished the different changes in flow conditions; they thus had direct physiological relevance, unlike the standard waveform indices.


Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


Author(s):  
Vinod U. Kakade ◽  
Steven J. Thorpe ◽  
Miklós Gerendás

The thermal management of aero gas turbine engine combustion systems commonly employs effusion-cooling in combination with various cold-side convective cooling schemes. The combustor liner incorporates many small holes which are usually set in staggered arrays and at a shallow angle to the cooled surface; relatively cold compressor delivery air is then allowed to flow through these holes to provide the full-coverage film-cooling effect. The efficient design of such systems requires robust correlations of film-cooling effectiveness and heat transfer coefficient at a range of aero-thermal conditions, and the use of appropriately validated computational models. However, the flow conditions within a combustor are characterised by particularly high turbulence levels and relatively large length scales. The experimental evidence for performance of effusion-cooling under such flow conditions is currently sparse. The work reported here is aimed at quantifying typical effusion-cooling performance at a range of combustor relevant free-stream conditions (high turbulence), and also to assess the importance of modeling the coolant to free-stream density ratio. Details of a new laboratory wind-tunnel facility for the investigation of film-cooling at high turbulence levels are reported. For a typical combustor effusion geometry that uses cylindrical holes, spatially resolved measurements of adiabatic effectiveness, heat transfer coefficient and net heat flux reduction are presented for a range of blowing ratios (0.48 to 2), free-stream turbulence conditions (4 and 22%) and density ratios (0.97 and 1.47). The measurements reveal that elevated free-stream turbulence impacts on both the adiabatic effectiveness and heat transfer coefficient, although this is dependent upon the blowing ratio being employed and particularly the extent to which the coolant jets detach from the surface. At low blowing ratios the presence of high turbulence levels causes increased lateral spreading of the coolant adjacent to the injection points, but more rapid degradation in the downstream direction. At high blowing ratios, high turbulence levels cause a modest increase in effectiveness due to turbulent transport of the detached coolant fluid. Additionally, the augmentation of heat transfer coefficient caused by the coolant injection is seen to be increased at high free-stream turbulence levels.


2021 ◽  
Vol 503 (3) ◽  
pp. 3460-3471
Author(s):  
Naomi Murdoch ◽  
Melanie Drilleau ◽  
Cecily Sunday ◽  
Florian Thuillet ◽  
Arnaud Wilhelm ◽  
...  

ABSTRACT With the flourishing number of small body missions that involve surface interactions, understanding the mechanics of spacecraft – surface interactions is crucial for improving our knowledge about the landing phases of space missions, for preparing spacecraft operations, and for interpreting the results of measurements made during the surface interactions. Given their regolith-covered surfaces, the process of landing on a small body can be considered as an impact at low-velocity on to a granular material in reduced-gravity. In order to study the influence of the surface material, projectile shape, and gravity on the collision dynamics, we used two experimental configurations (one for terrestrial gravity experiments and one for reduced-gravity experiments) to perform low-velocity collisions into different types of granular materials: quartz sand, and two different sizes of glass beads (1.5 and 5 mm diameter). Both a spherical and a cubic projectile (with varying impact orientation) were used. The experimental data support a drag model for the impact dynamics composed of both a hydrodynamic drag force and quasi-static resistance force. The hydrodynamic and quasi-static contributions are related to the material frictional properties, the projectile geometry, and the gravity. The transition from a quasi-static to a hydrodynamical regime is shown to occur at lower impact velocities in reduced-gravity trials than in terrestrial gravity trials, indicating that regolith has a more fluid-like behaviour in low-gravity. The reduced quasi-static regime of a granular material under low-gravity conditions leads to a reduction in the strength, resulting in a decreased resistance to penetration and larger penetration depths.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e56789 ◽  
Author(s):  
Felipe Dargent ◽  
Julián Torres-Dowdall ◽  
Marilyn E. Scott ◽  
Indar Ramnarine ◽  
Gregor F. Fussmann

2021 ◽  
Author(s):  
Farhad Bahmanpouri ◽  
Silvia Barbetta ◽  
Carlo Gualtieri ◽  
Marco Ianniruberto ◽  
Naziano Filizola ◽  
...  

<p>When two mega rivers merge the mixing of two flows results in a highly complex three-dimensional flow structure in an area known as the confluence hydrodynamic zone. In the confluence zone, substantial changes occur to the hydrodynamic and morphodynamic features which are of significant interest for researchers. The confluence of the Negro and Solimões Rivers, as one of the largest river junctions on Earth, is the study area of the present research. During the EU-funded Project “Clim-Amazon” (2011-2015), velocity data were collected using an ADCP vessel operating under high and low flow conditions in different locations at that confluence (Gualtieri et al., 2019). By applying the Entropy theory developed by Chiu (1988) for natural channels and simplified by Moramarco et al. (2014), the two-dimensional velocity distribution, as well as depth-averaged velocity, were calculated at the different transects along the confluence zone, using only the surface velocities observation. The estimated data yielded 6.6% and 6.9% error percentage for the discharge data related to high and low flow conditions, respectively, and 8.4% and 8.3% error percentage for the velocity data related to high and low flow conditions, respectively. Regardless of the flow condition, these preliminary results also suggest the potential points at the confluence zone for the maximum local scouring. The findings of the current research highlighted the potential of Entropy theory to estimate the flow characteristics at the large river’s confluence, just starting from the measure of surface velocities. This is of considerable interest for monitoring high flows using no-contact technology, when ADCP or other contact equipment cannot be used for the safety of operators and risks for equipment loss.</p><p> </p><p>Keywords: Amazon River, Negro/Solimões Confluence, Entropy Theory, Velocity Distribution, Local Scouring</p><p>References</p><p>Gualtieri, C., Ianniruberto, M., Filizola, N. (2019). On the mixing of rivers with a difference in density: the case of the Negro/Solimões confluence, Brazil. Journal of Hydrology, 578(11), November 2019, 124029,</p><p>Chiu, C. L. (1988). “Entropy and 2-D velocity distribution in open channels”. Journal of Hydrologic Engineering, ASCE, 114(7), 738-756</p><p>Moramarco, T., Saltalippi, C., Singh, V.P. (2004). “Estimation of mean velocity in natural channels based on Chiu’s velocity distribution equation”. Journal of Hydrologic Engineering, ASCE, 9 (1), pp. 42-50</p>


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 118 ◽  
Author(s):  
Hossein Hamidifar ◽  
Alireza Keshavarzi ◽  
Paweł M. Rowiński

Trees have been used extensively by river managers for improving the river environment and ecology. The link between flow hydraulics, bed topography, habitat availability, and organic matters is influenced by vegetation. In this study, the effect of trees on the mean flow, bed topography, and bed shear stress were tested under different flow conditions. It was found that each configuration of trees produced particular flow characteristics and bed topography patterns. The SR (single row of trees) model appeared to deflect the maximum velocity downstream of the bend apex toward the inner bank, while leading the velocity to be more uniformly distributed throughout the bend. The entrainment of sediment particles occurred toward the area with higher values of turbulent kinetic energy (TKE). The results showed that both SR and DR (double rows of trees) models are effective in relieving bed erosion in sharp ingoing bends. The volume of the scoured bed was reduced up to 70.4% for tests with trees. This study shows the effectiveness of the SR model in reducing the maximum erosion depth.


Sign in / Sign up

Export Citation Format

Share Document