scholarly journals Activation of cell migration via morphological changes in focal adhesions depends on shear stress in MYCN-amplified neuroblastoma cells

2019 ◽  
Vol 16 (152) ◽  
pp. 20180934
Author(s):  
Takumi Hiraiwa ◽  
Takahiro G. Yamada ◽  
Norihisa Miki ◽  
Akira Funahashi ◽  
Noriko Hiroi

Neuroblastoma is the most common solid tumour of childhood, and it metastasizes to distant organs. However, the mechanism of metastasis, which generally depends on the cell motility of the neuroblastoma, remains unclear. In many solid tumours, it has been reported that shear stress promotes metastasis. Here, we investigated the relationship between shear stress and cell motility in the MYCN-amplified human neuroblastoma cell line IMR32, using a microfluidic device. We confirmed that most of the cells migrated downstream, and cell motility increased dramatically when the cells were exposed to a shear stress of 0.4 Pa, equivalent to that expected in vivo . We observed that the morphological features of focal adhesion were changed under a shear stress of 0.4 Pa. We also investigated the relationship between malignancy and the motility of IMR32 cells under shear stress. Decreasing the expression of MYCN in IMR32 cells via siRNA transfection inhibited cell motility by a shear stress of 0.4 Pa. These results suggest that MYCN-amplified neuroblastoma cells under high shear stress migrate to distant organs due to high cell motility, allowing cell migration to lymphatic vessels and venules.

2020 ◽  
Vol 17 (2) ◽  
pp. 169-183 ◽  
Author(s):  
İrem Bozbey ◽  
Suat Sari ◽  
Emine Şalva ◽  
Didem Kart ◽  
Arzu Karakurt

Background: Azole antifungals are among the first-line drugs clinically used for the treatment of systemic candidiasis, a deadly type of fungal infection that threatens mostly immunecompromised and hospitalized patients. Some azole derivatives were also reported to have antiproliferative effects on cancer cells. Objective: In this study, 1-(4-trifluoromethylphenyl)-2-(1H-imidazol-1-yl)ethanone (3), its oxime (4), and a series of its novel oxime ester derivatives (5a-v) were synthesized and tested for their in vitro antimicrobial activities against certain ATCC standard strains of Candida sp. fungi and bacteria. The compounds were also tested for their cytotoxic effects against mouse fibroblast and human neuroblastoma cell lines. Molecular modeling studies were performed to provide insights into their possible mechanisms for antifungal and antibacterial actions. Methods: The compounds were synthesized by the reaction of various oximes with acyl chlorides. Antimicrobial activity of the compounds was determined according to the broth microdilution method. For the determination of cytotoxic effect, we used MTS assay. Molecular docking and QM/MM studies were performed to predict the binding mechanisms of the active compounds in the catalytic site of C. albicans CYP51 (CACYP51) and S. aureus flavohemoglobin (SAFH), the latter of which was created via homology modeling. Results: 5d, 5l, and 5t showed moderate antifungal activity against C. albicans, while 3, 5c, and 5r showed significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Most of the compounds showed approximately 40-50% inhibition against the human neuroblastoma cells at 100 µM. In this line, 3 was the most potent with an IC50 value of 82.18 μM followed by 5a, 5o, and 5t. 3 and 5a were highly selective to the neuroblastoma cells. Molecular modelling results supported the hypothesis that our compounds were inhibitors of CAYP51 and SAFH. Conclusion: This study supports that oxime ester derivatives may be used for the development of new antimicrobial and cytotoxic agents.


1988 ◽  
Vol 8 (4) ◽  
pp. 1677-1683 ◽  
Author(s):  
C J Thiele ◽  
P S Cohen ◽  
M A Israel

We detected expression of the c-myb proto-oncogene, which was initially thought to be expressed in a tissue-specific manner in cells of hematopoietic lineage, in human tissues of neuronal origin. Since the level of c-myb expression declined during fetal development, we studied the regulation of its expression in human neuroblastoma cell lines induced to differentiate by retinoic acid. The expression of c-myb declined during the maturation of neuroblastoma cells, and this change was mediated by a decrease in c-myb transcription.


2021 ◽  
Vol 11 (10) ◽  
pp. 1908-1917
Author(s):  
Rongkang Mai ◽  
Yiyao Cao ◽  
Huitian Yu ◽  
Yong Zheng ◽  
Juke Huang

80 male Wistar rats were stochastically assigned to Sham + Vehicle group, Sham + BUT group, PD + Vehicle group and PD + BUT group. Rotenone PD model rats were prepared by subcutaneous injection of rotenone sunflower oil emulsion 2 mg/(kg · d) for 5 consecutive weeks. Butylphthalide 80 mg/(kg · d) were given to the rats in Sham + BUT group and PD + BUT group by gavage from the first day of rotenone injection for 5 weeks. Subsequently, the motor retardation ability and the morphological changes of the substantia nigra (SN) of each group were evaluated. Meanwhile, the levels of neuronal injury, apoptosis, inflammation and oxidative stress in each group of rats were assayed. The impact of BUT treatment on miR-146a-5p expression and PI3K/AKT signal pathway in rat brain tissue was assayed. Finally, by constructing a PD cell model of the neurotoxin 6-hydroxydopamine (6-OHDA)-treated human neuroblastoma cell line SH-SY5Y, the in vitro anti-PD pharmacological effect of BUT was further verified.


1994 ◽  
Vol 14 (10) ◽  
pp. 6584-6596
Author(s):  
G Melino ◽  
M Annicchiarico-Petruzzelli ◽  
L Piredda ◽  
E Candi ◽  
V Gentile ◽  
...  

In this report, we show that the overexpression of tissue transglutaminase (tTG) in the human neuroblastoma cell line SK-N-BE(2) renders these neural crest-derived cells highly susceptible to death by apoptosis. Cells transfected with a full-length tTG cDNA, under the control of a constitutive promoter, show a drastic reduction in proliferative capacity paralleled by a large increase in cell death rate. The dying tTG-transfected cells exhibit both cytoplasmic and nuclear changes characteristic of cells undergoing apoptosis. The tTG-transfected cells express high Bcl-2 protein levels as well as phenotypic neural cell adhesion molecule markers (NCAM and neurofilaments) of cells differentiating along the neuronal pathway. In keeping with these findings, transfection of neuroblastoma cells with an expression vector containing segments of the human tTG cDNA in antisense orientation resulted in a pronounced decrease of both spontaneous and retinoic acid (RA)-induced apoptosis. We also present evidence that (i) the apoptotic program of these neuroectodermal cells is strictly regulated by RA and (ii) cell death by apoptosis in the human neuroblastoma SK-N-BE(2) cells preferentially occurs in the substrate-adherent phenotype. For the first time, we report here a direct effect of tTG in the phenotypic maturation toward apoptosis. These results indicate that the tTG-dependent irreversible cross-linking of intracellular protein represents an important biochemical event in the induction of the structural changes featuring cells dying by apoptosis.


2019 ◽  
Vol 20 (19) ◽  
pp. 4764 ◽  
Author(s):  
Marzia Ognibene ◽  
Marina Podestà ◽  
Alberto Garaventa ◽  
Annalisa Pezzolo

Neuroblastoma (NB) is an aggressive, relapse-prone infancy tumor of the sympathetic nervous system and is the leading cause of death among preschool age diseases, so the search for novel therapeutic targets is crucial. Golgi phosphoprotein 3 (GOLPH3) has been reported to be involved in the development, and in the DNA damage response, of various human cancers. Golgi dispersal is a common feature of DNA damage response in mammalian cells. Understanding how cells react to DNA damage is essential in order to recognize the systems used to escape from elimination. We induced DNA damage in two human neuroblastoma cell lines by curcumin. The exposure of neuroblastoma cells to curcumin induced: (a) up-regulation of GOLPH3+ cells; (b) augmentation of double-strand breaks; (c) Golgi fragmentation and dispersal throughout the cytoplasm; (d) increase of apoptosis and autophagy; (e) increased expression of TPX2 oncoprotein, able to repair DNA damage. Primary neuroblastoma samples analysis confirmed these observations. Our findings suggest that GOLPH3 expression levels may represent a clinical marker of neuroblastoma patients’ responsiveness to DNA damaging therapies—and of possible resistance to them. Novel molecules able to interfere with GOLPH3 and TPX2 pathways may have therapeutic benefits when used in combination with standard DNA damaging therapeutic agents in neuroblastoma


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4707
Author(s):  
Maria Camilla Bergonzi ◽  
Marzia Vasarri ◽  
Giulia Marroncini ◽  
Emanuela Barletta ◽  
Donatella Degl’Innocenti

Thymoquinone (TQ) is the main active ingredient of Nigella sativa essential oil, with remarkable anti-neoplastic activities with anti-invasive and anti-migratory abilities on a variety of cancer cell lines. However, its poor water solubility, high instability in aqueous solution and pharmacokinetic drawbacks limits its use in therapy. Soluplus® and Solutol® HS15 were employed as amphiphilic polymers for developing polymeric micelles (SSM). Chemical and physical characterization studies of micelles are reported, in terms of size, homogeneity, zeta potential, critical micelle concentration (CMC), cloud point, encapsulation efficiency (EE%), load capacity (DL), in vitro release, and stability. This study reports for the first time the anti-migratory activity of TQ and TQ loaded in SSM (TQ-SSM) in the SH-SY5Y human neuroblastoma cell line. The inhibitory effect was assessed by the wound-healing assay and compared with that of the unformulated TQ. The optimal TQ-SSM were provided with small size (56.71 ± 1.41 nm) and spherical shape at ratio of 1:4 (Soluplus:Solutol HS15), thus increasing the solubility of about 10-fold in water. The entrapment efficiency and drug loading were 92.4 ± 1.6% and 4.68 ± 0.12, respectively, and the colloidal dispersion are stable during storage for a period of 40 days. The TQ-SSM were also lyophilized to obtain a more workable product and with increased stability. In vitro release study indicated a prolonged release of TQ. In conclusion, the formulation of TQ into SSM allows a bio-enhancement of TQ anti-migration activity, suggesting that TQ-SSM is a better candidate than unformulated TQ to inhibit human SH-SY5Y neuroblastoma cell migration.


Pteridines ◽  
2004 ◽  
Vol 15 (3) ◽  
pp. 91-96
Author(s):  
Stephan Leitner ◽  
Georg Golderer ◽  
Christiana Winkler ◽  
Dietmar Fuchs ◽  
Gabriele Werner-Felmayer ◽  
...  

AbstractWe investigated a possible involvement of nitric oxide formed by inducible nitric oxide synthase (iNOS) in the signaling cascade leading to growth inhibition and differentiation in the human neuroblastoma cell line SK-NSII. Treatment of SK-N-SH with interferon-γ (IFN-γ) plus interleukin-lß (IL-lß) led to induction of iNOS, growth inhibition and an altered cell shape. However two inhibitors of iNOS were not able to prevent cytokine induced changes. In addition, IFN-γ alone led to growth inhibition in absence of iNOS induction. Inhibition of the induced indoleamine 2,3-dioxygenase (IDO) activity also did not prevent growth inhibition. Our findings show that mechanisms other than NO and IDO can control interferon-y-induced growth inhibition of SK-N-SH cells.


Endocrinology ◽  
2013 ◽  
Vol 154 (6) ◽  
pp. 2092-2100 ◽  
Author(s):  
Daniela Grassi ◽  
Maria Jose Bellini ◽  
Estefania Acaz-Fonseca ◽  
GianCarlo Panzica ◽  
Luis M. Garcia-Segura

Abstract The expression of arginine-vasopressin (AVP) is regulated by estradiol and testosterone (T) in different neuronal populations by mechanisms that are not yet fully understood. Estrogen receptors (ERs) have been shown to participate in the regulation of AVP neurons by estradiol. In addition, there is evidence of the participation of ERβ in the regulation of AVP expression exerted by T via its metabolite 5α-dihydrotestosterone (5α-DHT) and its further conversion in the androgen metabolite and ERβ ligand 3β-diol. In this study we have explored the role of ERs in the regulation exerted by estradiol and T on AVP expression, using the human neuroblastoma cell line SH-SY5Y. Estradiol treatment increased AVP mRNA levels in SH-SY5Y cells in comparison with cells treated with vehicle. The stimulatory effect of estradiol on AVP expression was imitated by the ERα agonist 4,4′,4′,-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol and blocked by the ER antagonist, ICI 182,780, and the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1hpyrazoledihydrochloride. In contrast, the ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile reduced AVP expression, whereas the ERβ antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl) pyrazolo[1,5-a]pyrimidin-3-yl]phenol enhanced the action of estradiol on AVP expression. T increased AVP expression in SH-SY5Y cells by a mechanism that was dependent on aromatase but not on 5α-reductase activity. The T effect was not affected by blocking the androgen receptor, was not imitated by the T metabolite 5α-DHT, and was blocked by the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1hpyrazoledihydrochloride. In contrast, 5α-DHT had a similar effect as the ERβ agonists 2,3-bis(4-hydroxyphenyl)-propionitrile and 3β-diol, reducing AVP expression. These findings suggest that estradiol and T regulate AVP expression in SH-SY5Y cells through ERs, exerting a stimulatory action via ERα and an inhibitory action via ERβ.


Blood ◽  
1986 ◽  
Vol 68 (1) ◽  
pp. 32-36 ◽  
Author(s):  
F Sieber ◽  
S Rao ◽  
SD Rowley ◽  
M Sieber-Blum

Cells from three different human neuroblastoma cell lines and normal human bone marrow cells were exposed to the lipophilic fluorescent dye, merocyanine 540 (MC 540), and white light. In vitro clonogenic tumor cells were inactivated up to 25,000 times more rapidly than multipotent hematopoietic progenitor cells (CFU-GEMM). It is conceivable that this pronounced difference in sensitivity to MC 540-mediated photolysis can be exploited for the selective killing of residual neuroblastoma cells in autologous remission marrow grafts.


1991 ◽  
Vol 2 (12) ◽  
pp. 1021-1033 ◽  
Author(s):  
P Rossino ◽  
P Defilippi ◽  
L Silengo ◽  
G Tarone

Retinoic acid (RA) is known to induce differentiation of neuroblastoma cells in vitro. Here we show that treatment of two human neuroblastoma cell lines, SY5Y and IMR32, with RA resulted in a fivefold increase of the integrin alpha 1/beta 1 expression. The effect was selective because expression of the alpha 3/beta 1 integrin, also present in these cells, was not increased. The up-regulation of the alpha 1/beta 1 differentiated SY5Y cells correlated with increased neurite response to laminin. In fact, RA-treated SY5Y cells elongated neurites on laminin-coated substratum more efficiently compared with untreated cells or cells treated with nerve growth factor, insulin, or phorbol 12-myristate 13-acetate. These three agents induced partial morphological differentiation but did not increase alpha 1 integrin expression. Neurite extension in RA-treated cells was more efficient on laminin than on fibronectin or collagen type I and was inhibited with beta 1 integrin antibodies on all three substrates. Affinity chromatography experiments showed that alpha 1/beta 1 is the major laminin receptor in both untreated and RA-treated SY5Y cells. These data show that RA, a naturally occurring morphogen implicated in embryonic development, can selectively regulate the expression of integrin complexes in neuronal cells and suggest an important role of the alpha 1/beta 1 laminin receptor in the morphological differentiation of nerve cells.


Sign in / Sign up

Export Citation Format

Share Document