scholarly journals Osteocyte TSC1 promotes sclerostin secretion to restrain osteogenesis in mice

Open Biology ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 180262 ◽  
Author(s):  
Wen Liu ◽  
Zhenyu Wang ◽  
Jun Yang ◽  
Yongkui Wang ◽  
Kai Li ◽  
...  

Osteocytes secrete the glycoprotein sclerostin to inhibit bone formation by osteoblasts, but how sclerostin production is regulated in osteocytes remains unclear. Here, we show that tuberous sclerosis complex 1 (TSC1) in osteocytes promotes sclerostin secretion through inhibition of mechanistic target of rapamycin complex 1 (mTORC1) and downregulation of Sirt1. We generated mice with DMP1 -Cre-directed Tsc1 gene deletion ( Tsc1 CKO) to constitutively activate mTORC1 in osteocytes. Although osteocyte TSC1 disruption increased RANKL expression and osteoclast formation, it markedly reduced sclerostin production in bone, resulting in severe osteosclerosis with enhanced bone formation in mice. Knockdown of TSC1 activated mTORC1 and decreased sclerostin, while rapamycin inhibited mTORC1 and increased sclerostin mRNA and protein expression levels in MLO-Y4 osteocyte-like cells. Furthermore, mechanical loading activated mTORC1 and prevented sclerostin expression in osteocytes. Mechanistically, TSC1 promotes sclerostin production and prevents osteogenesis through inhibition of mTORC1 and downregulation of Sirt1, a repressor of the sclerostin gene Sost . Our findings reveal a role of TSC1/mTORC1 signalling in the regulation of osteocyte sclerostin secretion and bone formation in response to mechanical loading in vitro . Targeting TSC1 represents a potential strategy to increase osteogenesis and prevent bone loss-related diseases.

2021 ◽  
Vol 22 (9) ◽  
pp. 4717
Author(s):  
Jin-Young Lee ◽  
Da-Ae Kim ◽  
Eun-Young Kim ◽  
Eun-Ju Chang ◽  
So-Jeong Park ◽  
...  

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


1986 ◽  
Vol 250 (2) ◽  
pp. F302-F307 ◽  
Author(s):  
J. M. Burnell ◽  
C. Liu ◽  
A. G. Miller ◽  
E. Teubner

To study the effects of bicarbonate and magnesium on bone, mild acidosis and/or hypermagnesemia were produced in growing rats by feeding ammonium chloride and/or magnesium sulfate. Bone composition, quantitative histomorphometry, and mineral x-ray diffraction (XRD) characteristics were measured after 6 wk of treatment. The results demonstrated that both acidosis (decreased HCO3) and hypermagnesemia inhibited periosteal bone formation, and, when combined, results were summative; and the previously observed in vitro role of HCO3- and Mg2+ as inhibitors of crystal growth were confirmed in vivo. XRD measurements demonstrated that decreased plasma HCO3 resulted in larger crystals and increased Mg resulted in smaller crystals. However, the combined XRD effects of acidosis and hypermagnesemia resembled acidosis alone. It is postulated that the final composition and crystal structure of bone are strongly influenced by HCO3- and Mg2+, and the effects are mediated by the combined influence on both osteoblastic bone formation and the growth of hydroxyapatite.


2020 ◽  
Vol 21 (21) ◽  
pp. 8042
Author(s):  
Fran Quilty ◽  
Anne-Marie Byrne ◽  
John Aird ◽  
Sheeren El Mashad ◽  
Adolfo Parra-Blanco ◽  
...  

Bile acids (BAs) have been implicated in the development of oesophagitis, Barrett’s oesophagus and oesophageal adenocarcinoma (OAC). However, whether BAs promote cancer invasiveness has not been elucidated. We evaluated the role of BAs, in particular deoxycholic acid (DCA), in OAC invasion. Migration and invasiveness in untreated and BA-treated oesophageal SKGT-4 cancer cells were evaluated. Activity and expression of different matrix metalloproteinases (MMPs) were determined by zymography, ELISA, PCR and Western blot. Finally, human OAC tissues were stained for MMP-10 by immunohistochemistry. It was found that SKGT-4 cells incubated with low concentrations of DCA had a significant increase in invasion. In addition, MMP-10 mRNA and protein expression were also increased in the presence of DCA. MMP-10 was found to be highly expressed both in-vitro and in-vivo in neoplastic OAC cells relative to non-neoplastic squamous epithelial cells. Our results show that DCA promotes OAC invasion and MMP-10 overexpression. This study will advance our understanding of the pathophysiological mechanisms involved in human OAC and shows promise for the development of new therapeutic strategies.


2020 ◽  
Vol 21 (8) ◽  
pp. 2745
Author(s):  
Yukihiro Kohara ◽  
Ryuma Haraguchi ◽  
Riko Kitazawa ◽  
Yuuki Imai ◽  
Sohei Kitazawa

The functional role of the Hedgehog (Hh)-signaling pathway has been widely investigated in bone physiology/development. Previous studies have, however, focused primarily on Hh functions in bone formation, while its roles in bone resorption have not been fully elucidated. Here, we found that cyclopamine (smoothened (Smo) inhibitor), GANT-58 (GLI1 inhibitor), or GANT-61 (GLI1/2 inhibitor) significantly inhibited RANKL-induced osteoclast differentiation of bone marrow-derived macrophages. Although the inhibitory effects were exerted by cyclopamine or GANT-61 treatment during 0–48 h (early stage of osteoclast differentiation) or 48–96 h (late stage of osteoclast differentiation) after RANKL stimulation, GANT-58 suppressed osteoclast formation only during the early stage. These results suggest that the Smo-GLI1/2 axis mediates the whole process of osteoclastogenesis and that GLI1 activation is requisite only during early cellular events of osteoclastogenesis. Additionally, macrophage/osteoclast-specific deletion of Smo in mice was found to attenuate the aging phenotype characterized by trabecular low bone mass, suggesting that blockage of the Hh-signaling pathway in the osteoclast lineage plays a protective role against age-related bone loss. Our findings reveal a specific role of the Hh-signaling pathway in bone resorption and highlight that its inhibitors show potential as therapeutic agents that block osteoclast formation in the treatment of senile osteoporosis.


2020 ◽  
Vol 21 (24) ◽  
pp. 9721
Author(s):  
Giuseppina Augimeri ◽  
Luca Gelsomino ◽  
Pierluigi Plastina ◽  
Cinzia Giordano ◽  
Ines Barone ◽  
...  

Multiple lines of evidence indicate that activation of the peroxisome proliferator-activated receptor γ (PPARγ) by natural or synthetic ligands exerts tumor suppressive effects in different types of cancer, including breast carcinoma. Over the past decades a new picture of breast cancer as a complex disease consisting of neoplastic epithelial cells and surrounding stroma named the tumor microenvironment (TME) has emerged. Indeed, TME is now recognized as a pivotal element for breast cancer development and progression. Novel strategies targeting both epithelial and stromal components are under development or undergoing clinical trials. In this context, the aim of the present review is to summarize PPARγ activity in breast TME focusing on the role of this receptor on both epithelial/stromal cells and extracellular matrix components of the breast cancer microenvironment. The information provided from the in vitro and in vivo research indicates PPARγ ligands as potential agents with regards to the battle against breast cancer.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1325
Author(s):  
Tal Tamari ◽  
Rawan Kawar-Jaraisy ◽  
Ofri Doppelt ◽  
Ben Giladi ◽  
Nadin Sabbah ◽  
...  

Vascularization is a prerequisite for bone formation. Endothelial progenitor cells (EPCs) stimulate bone formation by creating a vascular network. Moreover, EPCs secrete various bioactive molecules that may regulate bone formation. The aim of this research was to shed light on the pathways of EPCs in bone formation. In a subcutaneous nude mouse ectopic bone model, the transplantation of human EPCs onto β-TCP scaffold increased angiogenesis (p < 0.001) and mineralization (p < 0.01), compared to human neonatal dermal fibroblasts (HNDF group) and a-cellular scaffold transplantation (β-TCP group). Human EPCs were lining blood vessels lumen; however, the majority of the vessels originated from endogenous mouse endothelial cells at a higher level in the EPC group (p < 01). Ectopic mineralization was mostly found in the EPCs group, and can be attributed to the recruitment of endogenous mesenchymal cells ten days after transplantation (p < 0.0001). Stromal derived factor-1 gene was expressed at high levels in EPCs and controlled the migration of mesenchymal and endothelial cells towards EPC conditioned medium in vitro. Blocking SDF-1 receptors on both cells abolished cell migration. In conclusion, EPCs contribute to osteogenesis mainly by the secretion of SDF-1, that stimulates homing of endothelial and mesenchymal cells. This data may be used to accelerate bone formation in the future.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Yinhang Wang ◽  
Qiang Guo ◽  
Hongya Hei ◽  
Jie Tao ◽  
Yi Zhou ◽  
...  

Abstract Impaired bone formation is one of the major causes of low bone mass and skeletal fragility that occurs in osteoporosis. However, the mechanisms underlying the defects in bone formation are not well understood. Here, we report that big conductance calcium-activated potassium channels (BKs) are required for bone formation and osteoblast function both in vivo and in vitro. By 15 weeks of age, BK knockout (BKO) mice exhibited a decline in bone mineral density and trabecular bone volume of the tibiae and lumbar vertebrae, which were associated with impaired bone formation and osteoblast activity. Mechanistically, BK ablation in bone and bone marrow mesenchymal stem cells (BMSCs) of BKO mice inhibited integrin signaling. Furthermore, the binding of α subunit of BK with integrin β1 protein in osteoblasts was confirmed, and FAK-ERK1/2 signaling was proved to be involved by genetic modification of KCNMA1 (which encodes the α subunit of BK) in ROS17/2.8 osteoblast cells. These findings indicated that BK regulates bone formation by promoting osteoblast differentiation via integrin pathway, which provided novel insight into ion transporter crosstalk with the extracellular matrix in osteoblast regulation and revealed a new potential strategy for intervention in correcting bone formation defects.


RMD Open ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. e001306
Author(s):  
Mittal Shah ◽  
Asher Maroof ◽  
Panos Gikas ◽  
Gayatri Mittal ◽  
Richard Keen ◽  
...  

ObjectivesInterleukin (IL)-17 signalling has been shown to be a key regulator of disease in ankylosing spondylitis (AS) with several IL-17 blockers currently clinically approved. Despite this, the role of IL-17 in bone pathology is poorly understood. This study aimed to investigate IL-17 signalling in the context of pathological bone formation.MethodsA biomimetic human periosteum-derived cell (hPDC) model of osteogenic differentiation was used in combination with recombinant IL-17 cytokines, T-cell supernatants or serum from patients with AS. IL-17A, IL-17F and bimekizumab monoclonal antibodies were used to block IL-17 cytokine action.ResultsRecombinant IL-17A and IL-17F are pro-osteogenic with respect to hPDC differentiation. T helper 17 or γδ-T cell supernatants also potently stimulated in vitro bone formation, which was blocked deeper by dual inhibition of IL-17A and IL-17F than by neutralisation of IL-17A or IL-17F individually. Osteogenic blockade may be due to an increase in expression of the Wnt antagonist DKK1. Interestingly, osteocommitment was also induced by serum obtained from patients with AS, which was also abrogated by dual neutralisation of IL-17A and IL-17F.ConclusionsThese data show for the first time that IL-17A and IL-17F enhance in vitro osteogenic differentiation and bone formation from hPDCs, inhibition of which may offer an attractive therapeutic strategy to prevent pathological bone formation.


Leukemia ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 390-398 ◽  
Author(s):  
J Teramachi ◽  
R Silbermann ◽  
P Yang ◽  
W Zhao ◽  
K S Mohammad ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hideki Kitaura ◽  
Masahiko Ishida ◽  
Keisuke Kimura ◽  
Haruki Sugisawa ◽  
Akiko Kishikawa ◽  
...  

Lipopolysaccharide (LPS) is an endotoxin and bacterial cell wall component that is capable of inducing inflammation and immunological activity. Muramyl dipeptide (MDP), the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is another inflammation-inducing molecule that is ubiquitously expressed by bacteria. Several studies have shown that inflammation-related biological activities were synergistically induced by interactions between LPS and MDP. MDP synergistically enhances production of proinflammatory cytokines that are induced by LPS exposure. Injection of MDP induces lethal shock in mice challenged with LPS. LPS also induces osteoclast formation and pathological bone resorption; MDP enhances LPS induction of both processes. Furthermore, MDP enhances the LPS-induced receptor activator of NF-κB ligand (RANKL) expression and toll-like receptor 4 (TLR4) expression bothin vivoandin vitro. Additionally, MDP enhances LPS-induced mitogen-activated protein kinase (MAPK) signaling in stromal cells. Taken together, these findings suggest that MDP plays an important role in LPS-induced biological activities. This review discusses the role of MDP in LPS-mediated biological activities, primarily in relation to osteoclastogenesis.


Sign in / Sign up

Export Citation Format

Share Document