scholarly journals Defining the risk landscape in the context of pathogen pollution: Toxoplasma gondii in sea otters along the Pacific Rim

2018 ◽  
Vol 5 (7) ◽  
pp. 171178 ◽  
Author(s):  
Tristan L. Burgess ◽  
M. Tim Tinker ◽  
Melissa A. Miller ◽  
James L. Bodkin ◽  
Michael J. Murray ◽  
...  

Pathogens entering the marine environment as pollutants exhibit a spatial signature driven by their transport mechanisms. The sea otter ( Enhydra lutris ), a marine animal which lives much of its life within sight of land, presents a unique opportunity to understand land–sea pathogen transmission. Using a dataset on Toxoplasma gondii prevalence across sea otter range from Alaska to California, we found that the dominant drivers of infection risk vary depending upon the spatial scale of analysis. At the population level, regions with high T. gondii prevalence had higher human population density and a greater proportion of human-dominated land uses, suggesting a strong role for population density of the felid definitive host of this parasite. This relationship persisted when a subset of data were analysed at the individual level: large-scale patterns in sea otter T. gondii infection prevalence were largely explained by individual exposure to areas of high human housing unit density, and other landscape features associated with anthropogenic land use, such as impervious surfaces and cropping land. These results contrast with the small-scale, within-region analysis, in which age, sex and prey choice accounted for most of the variation in infection risk, and terrestrial environmental features provided little variation to help in explaining observed patterns. These results underscore the importance of spatial scale in study design when quantifying both individual-level risk factors and landscape-scale variation in infection risk.

Parasitology ◽  
2008 ◽  
Vol 135 (13) ◽  
pp. 1531-1544 ◽  
Author(s):  
A. PUGLIESE ◽  
R. ROSÀ

SUMMARYDeer are important blood hosts for feeding Ixodes ricinus ticks but they do not support transmission of many tick-borne pathogens, so acting as dead-end transmission hosts. Mathematical models show their role as tick amplifiers, but also suggest that they dilute pathogen transmission, thus reducing infection prevalence. Empirical evidence for this is conflicting: experimental plots with deer removal (i.e. deer exclosures) show that the effect depends on the size of the exclosure. Here we present simulations of dynamic models that take into account different tick stages, and several host species (e.g. rodents) that may move to and from deer exclosures; models were calibrated with respect to Ixodes ricinus ticks and tick-borne encephalitis (TBE) in Trentino (northern Italy). Results show that in small exclosures, the density of rodent-feeding ticks may be higher inside than outside, whereas in large exclosures, a reduction of such tick density may be reached. Similarly, TBE prevalence in rodents decreases in large exclosures and may be slightly higher in small exclosures than outside them. The density of infected questing nymphs inside small exclosures can be much higher, in our numerical example almost twice as large as that outside, leading to potential TBE infection risk hotspots.


2015 ◽  
Vol 282 (1801) ◽  
pp. 20141734 ◽  
Author(s):  
Dara A. Satterfield ◽  
John C. Maerz ◽  
Sonia Altizer

Long-distance animal migrations have important consequences for infectious disease dynamics. In some cases, migration lowers pathogen transmission by removing infected individuals during strenuous journeys and allowing animals to periodically escape contaminated habitats. Human activities are now causing some migratory animals to travel shorter distances or form sedentary (non-migratory) populations. We focused on North American monarch butterflies and a specialist protozoan parasite to investigate how the loss of migratory behaviours affects pathogen spread and evolution. Each autumn, monarchs migrate from breeding grounds in the eastern US and Canada to wintering sites in central Mexico. However, some monarchs have become non-migratory and breed year-round on exotic milkweed in the southern US. We used field sampling, citizen science data and experimental inoculations to quantify infection prevalence and parasite virulence among migratory and sedentary populations. Infection prevalence was markedly higher among sedentary monarchs compared with migratory monarchs, indicating that diminished migration increases infection risk. Virulence differed among parasite strains but was similar between migratory and sedentary populations, potentially owing to high gene flow or insufficient time for evolutionary divergence. More broadly, our findings suggest that human activities that alter animal migrations can influence pathogen dynamics, with implications for wildlife conservation and future disease risks.


2021 ◽  
Author(s):  
Trevor S. Farthing ◽  
Cristina Lanzas

AbstractIntervention strategies for minimizing indoor SARS-CoV-2 transmission are often based on anecdotal evidence because there is little evidence-based research to support them. We developed a spatially-explicit agent-based model for simulating indoor respiratory pathogen transmission, and used it to compare effects of four interventions on reducing individual-level SARS-CoV-2 transmission risk by simulating a well-known case study. We found that imposing movement restrictions and efficacious mask usage appear to have the greatest effects on reducing infection risk, but multiple concurrent interventions are required to minimize the proportion of susceptible individuals infected. Social distancing had little effect on reducing transmission if individuals move during the gathering. Furthermore, our results suggest that there is potential for ventilation airflow to expose susceptible people to aerosolized pathogens even if they are relatively far from infectious individuals. Maximizing rates of aerosol removal is the key to successful transmission-risk reduction when using ventilation systems as intervention tools.Article Summary LineImposing mask usage requirements, group size restrictions, duration limits, and social distancing policies can have additive, and in some cases multiplicative protective effects on SARS-CoV-2 infection risk during indoor events.


Author(s):  
Jingjing Wang ◽  
Xueying Wu ◽  
Ruoyu Wang ◽  
Dongsheng He ◽  
Dongying Li ◽  
...  

The coronavirus disease 2019 pandemic has stimulated intensive research interest in its transmission pathways and infection factors, e.g., socioeconomic and demographic characteristics, climatology, baseline health conditions or pre-existing diseases, and government policies. Meanwhile, some empirical studies suggested that built environment attributes may be associated with the transmission mechanism and infection risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, no review has been conducted to explore the effect of built environment characteristics on the infection risk. This research gap prevents government officials and urban planners from creating effective urban design guidelines to contain SARS-CoV-2 infections and face future pandemic challenges. This review summarizes evidence from 25 empirical studies and provides an overview of the effect of built environment on SARS-CoV-2 infection risk. Virus infection risk was positively associated with the density of commercial facilities, roads, and schools and with public transit accessibility, whereas it was negatively associated with the availability of green spaces. This review recommends several directions for future studies, namely using longitudinal research design and individual-level data, considering multilevel factors and extending to diversified geographic areas.


2021 ◽  
Vol 37 (4) ◽  
pp. 242-249
Author(s):  
Eva A. Buckner ◽  
Katie F. Williams ◽  
Samantha Ramirez ◽  
Constance Darrisaw ◽  
Juliana M. Carrillo ◽  
...  

ABSTRACT Aedes aegypti is the predominant vector of dengue, chikungunya, and Zika viruses. This mosquito is difficult to control with conventional methods due to its container-inhabiting behavior and resistance to insecticides. Autodissemination of pyriproxyfen (PPF), a potent larvicide, has shown promise as an additional tool to control Aedes species in small-scale field trials. However, few large-scale field evaluations have been conducted. We undertook a 6-month-long large-scale field study to compare the effectiveness and operational feasibility of using In2Care Mosquito Traps (In2Care Traps, commercially available Aedes traps with PPF and Beauveria bassiana) compared to an integrated vector management (IVM) strategy consisting of source reduction, larviciding, and adulticiding for controlling Ae. aegypti eggs, larvae, and adults. We found that while the difference between treatments was only statistically significant for eggs and larvae (P < 0.05 for eggs and larvae and P > 0.05 for adults), the use of In2Care Traps alone resulted in 60%, 57%, and 57% fewer eggs, larvae, and adults, respectively, collected from that site compared to the IVM site. However, In2Care Trap deployment and maintenance were more time consuming and labor intensive than the IVM strategy. Thus, using In2Care Traps alone as a control method for large areas (e.g., >20 ha) may be less practical for control programs with the capacity to conduct ground and aerial larviciding and adulticiding. Based on our study results, we conclude that In2Care Traps are effective at suppressing Ae. aegypti and have the most potential for use in areas without sophisticated control programs and within IVM programs to target hotspots with high population levels and/or risk of Aedes-borne pathogen transmission.


2021 ◽  
Author(s):  
Michael David ◽  
Paresh A. Malhotra

There is clear and early noradrenergic dysfunction in Alzheimer’s disease. This is likely secondary to pathological tau deposition in the locus coeruleus, the pontine nucleus that produces and releases noradrenaline, which occurs prior to involvement of cortical brain regions. Disruption of noradrenergic pathways affects cognition, especially attention, which impacts on memory and broader functioning in daily life. Additionally, it leads to the autonomic and neuropsychiatric symptoms that are frequently observed with disease progression.Despite the strong evidence of noradrenergic involvement in Alzheimer’s, there are no clear trial data supporting the clinical use of any noradrenergic treatments. Several approaches have been tried, including both proof-of-principle studies and randomised controlled trials, although most of the latter have been relatively small scale. Treatments have included drug therapies as well as stimulation modalities thought to modulate noradrenergic transmission. The lack of clear positive findings is likely secondary to limited capacity for gauging locus coeruleus integrity and noradrenergic dysfunction at an individual level. However, the recent development of several novel biomarkers holds potential and should allow quantification of dysfunction. This in turn may inform inclusion criteria and stratification for future trials. Imaging approaches in particular have improved greatly following the development of neuromelanin-sensitive sequences, enabling the use of structural MRI scans to estimate locus coeruleus integrity. Additionally, functional MRI and PET scanning have the potential to quantify network dysfunction. As well as neuroimaging, EEG and pupillometry techniques may prove useful in assessing noradrenergic tone and dynamic response to stimulation.Here we review the development of these biomarkers and discuss how they might augment clinical studies, particularly randomised trials, through stratification and identification of patients most likely to benefit from treatment. We outline the biomarkers with most potential, and how they hold promise as a means of transforming symptomatic therapy for people living with Alzheimer’s disease.


Author(s):  
Emma Rary ◽  
Sarah M. Anderson ◽  
Brandon D. Philbrick ◽  
Tanvi Suresh ◽  
Jasmine Burton

The health of individuals and communities is more interconnected than ever, and emergent technologies have the potential to improve public health monitoring at both the community and individual level. A systematic literature review of peer-reviewed and gray literature from 2000-present was conducted on the use of biosensors in sanitation infrastructure (such as toilets, sewage pipes and septic tanks) to assess individual and population health. 21 relevant papers were identified using PubMed, Embase, Global Health, CDC Stacks and NexisUni databases and a reflexive thematic analysis was conducted. Biosensors are being developed for a range of uses including monitoring illicit drug usage in communities, screening for viruses and diagnosing conditions such as diabetes. Most studies were nonrandomized, small-scale pilot or lab studies. Of the sanitation-related biosensors found in the literature, 11 gathered population-level data, seven provided real-time continuous data and 14 were noted to be more cost-effective than traditional surveillance methods. The most commonly discussed strength of these technologies was their ability to conduct rapid, on-site analysis. The findings demonstrate the potential of this emerging technology and the concept of Smart Sanitation to enhance health monitoring at the individual level (for diagnostics) as well as at the community level (for disease surveillance).


Sign in / Sign up

Export Citation Format

Share Document