scholarly journals Characterizing the supercomplex association of photosynthetic complexes in cyanobacteria

2021 ◽  
Vol 8 (7) ◽  
pp. 202142
Author(s):  
Zimeng Zhang ◽  
Long-Sheng Zhao ◽  
Lu-Ning Liu

The light reactions of photosynthesis occur in thylakoid membranes that are densely packed with a series of photosynthetic complexes. The lateral organization and close association of photosynthetic complexes in native thylakoid membranes are vital for efficient light harvesting and energy transduction. Recently, analysis of the interconnections between photosynthetic complexes to form supercomplexes has garnered great interest. In this work, we report a method integrating immunoprecipitation, mass spectrometry and atomic force microscopy to identify the inter-complex associations of photosynthetic complexes in thylakoid membranes from the cyanobacterium Synechococcus elongatus PCC 7942. We characterize the preferable associations between individual photosynthetic complexes and binding proteins involved in the complex–complex interfaces, permitting us to propose the structural models of photosynthetic complex associations that promote the formation of photosynthetic supercomplexes. We also identified other potential binding proteins with the photosynthetic complexes, suggesting the highly connecting networks associated with thylakoid membranes. This study provides mechanistic insight into the physical interconnections of photosynthetic complexes and potential partners, which are crucial for efficient energy transfer and physiological acclimatization of the photosynthetic apparatus. Advanced knowledge of the protein organization and interplay of the photosynthetic machinery will inform rational design and engineering of artificial photosynthetic systems to supercharge energy production.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tuomas Huokko ◽  
Tao Ni ◽  
Gregory F. Dykes ◽  
Deborah M. Simpson ◽  
Philip Brownridge ◽  
...  

AbstractHow thylakoid membranes are generated to form a metabolically active membrane network and how thylakoid membranes orchestrate the insertion and localization of protein complexes for efficient electron flux remain elusive. Here, we develop a method to modulate thylakoid biogenesis in the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942 by modulating light intensity during cell growth, and probe the spatial-temporal stepwise biogenesis process of thylakoid membranes in cells. Our results reveal that the plasma membrane and regularly arranged concentric thylakoid layers have no physical connections. The newly synthesized thylakoid membrane fragments emerge between the plasma membrane and pre-existing thylakoids. Photosystem I monomers appear in the thylakoid membranes earlier than other mature photosystem assemblies, followed by generation of Photosystem I trimers and Photosystem II complexes. Redistribution of photosynthetic complexes during thylakoid biogenesis ensures establishment of the spatial organization of the functional thylakoid network. This study provides insights into the dynamic biogenesis process and maturation of the functional photosynthetic machinery.


2018 ◽  
Author(s):  
Bibiana Onoa ◽  
Shingo Fukuda ◽  
Masakazu Iwai ◽  
Carlos Bustamante ◽  
Krishna K. Niyogi

ABSTRACTThylakoid membranes in chloroplasts contain photosynthetic protein complexes that convert light energy into chemical energy. Photosynthetic protein complexes are considered to undergo structural reorganization to maintain the efficiency of photochemical reactions. A detailed description of the mobility of photosynthetic complexes in real-time is necessary to understand how macromolecular organization of the membrane is altered by environmental fluctuations. Here, we used high-speed atomic force microscopy to visualize and characterize the in situ mobility of individual protein complexes in grana thylakoid membranes isolated from Spinacia oleracea. Our observations reveal that these membranes can harbor complexes with at least two distinctive classes of mobility. A large fraction of grana membranes contained proteins with quasi-static mobility, exhibiting molecular displacements smaller than 10 nm2. In the remaining fraction, the protein mobility is variable with molecular displacements of up to 100 nm2. This visualization at high-spatiotemporal resolution enabled us to estimate an average diffusion coefficient of ∼1 nm2 s-1. Interestingly, both confined and Brownian diffusion models could describe the protein mobility of the second group of membranes. We also provide the first direct evidence of rotational diffusion of photosynthetic complexes. The rotational diffusion of photosynthetic complexes could be an adaptive response to the high protein density in the membrane to guarantee the efficiency of electron transfer reactions. This characterization of the mobility of individual photosynthetic complexes in grana membranes establishes a foundation that could be adapted to study the dynamics of the complexes inside the intact and photosynthetically functional thylakoid membranes to be able to understand its structural responses to diverse environmental fluctuations.STATEMENT OF SIGNIFICANCEWe characterized the dynamics of individual photosynthetic protein complexes in grana thylakoid membranes from Spinacia oleracea by high-speed atomic microscopy (HS-AFM). Direct visualization at high spatiotemporal resolution unveils that the mobility of photosynthetic proteins is heterogeneous but governed by the confinement effect imposed by the high protein density in the thylakoid membrane. The photosynthetic complexes display rotational diffusion, which might be a consequence of the crowded environment in the membrane and a mechanism to sustain an efficient electron transfer chain.


2020 ◽  
Vol 61 (9) ◽  
pp. 1661-1668
Author(s):  
Egi Tritya Apdila ◽  
Shukumi Inoue ◽  
Mie Shimojima ◽  
Koichiro Awai

Abstract Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the major components of thylakoid membranes and well-conserved from cyanobacteria to chloroplasts. However, cyanobacteria and chloroplasts synthesize these galactolipids using different pathways and enzymes, but they are believed to share a common ancestor. This fact implies that there was a replacement of the cyanobacterial galactolipid biosynthesis pathway during the evolution of a chloroplast. In this study, we first replaced the cyanobacterial MGDG biosynthesis pathway in a model cyanobacterium, Synechococcus elongatus PCC 7942, with the corresponding plant-type pathway. No obvious phenotype was observed under the optimum growth condition, and the content of membrane lipids was not largely altered in the transformants. We next replaced the cyanobacterial DGDG biosynthesis pathway with the corresponding plant-type pathway using the strain described above and isolated the strain harboring the replaced plant-type pathway instead of the whole galactolipid biosynthesis pathway. This transformant, SeGPT, can grow photoautotrophically, indicating that cyanobacterial galactolipid biosynthesis pathways can be functionally complemented by the corresponding plant-type pathways and that the lipid products MGDG and DGDG, and not biosynthesis pathways, are important. While SeGPT does not show strong growth retardation, the strain has low cellular chlorophyll content but it retained a similar oxygen evolution rate per chlorophyll content compared with the wild type. An increase in total membrane lipid content was observed in SeGPT, which was caused by a significant increase in DGDG content. SeGPT accumulated carotenoids from the xanthophyll groups. These results suggest that cyanobacteria have the capacity to accept other pathways to synthesize essential components of thylakoid membranes.


2020 ◽  
Vol 147 (1) ◽  
pp. 39-48
Author(s):  
Xin Nie ◽  
Andreas Jäger ◽  
Janek Börner ◽  
Gabriele Klug

AbstractFormation of photosynthetic complexes leads to a higher demand for Fe–S clusters. We hypothesized that in the facultative phototrophic alpha-proteobacterium Rhodobacter sphaeroides expression of the isc-suf operon for Fe–S cluster formation may be increased under conditions that promote formation of photosynthetic complexes and that, vice versa, lack of the IscR regulator may also affect photosynthesis gene expression. To test this hypothesis, we monitored the activities of the isc-suf sense and anti-sense promoters under different growth conditions and in mutants which are impaired in formation of photosynthetic complexes. We also tested expression of photosynthesis genes in a mutant lacking the IscR regulator. Our results are not in agreement with a co-regulation of the Isc-Suf system and the photosynthetic apparatus at level of transcription. We provide evidence that, coordination of the systems occurs at post-transcriptional levels. Increased levels of isc-suf mRNAs under conditions promoting formation of photosynthetic complexes are due to higher RNA stability.


Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 169 ◽  
Author(s):  
A. El hat ◽  
I. Chaki ◽  
R. Essajai ◽  
A. Mzerd ◽  
G. Schmerber ◽  
...  

Structural, optical and electrical properties of (ytterbium/terbium) co-doped ZnO thin films deposited on glass substrates using the spray pyrolysis method were investigated. The films exhibited the hexagonal wurtzite structure with a preferential orientation along (002) direction. No secondary phase was observed in the X-ray diffraction detection limit. Atomic force microscopy (AFM) was performed and root means square roughness (RMS) of our samples decreased with terbium content. Photoluminescence measurements showed a luminescence band at 980 nm which is characteristic of Yb3+ transition between the electronic levels 2F5/2 to 2F7/2. This is experimental evidence for an efficient energy transfer from the ZnO matrix to Yb. Hall Effect measurements gave a low electrical resistivity value around 6.0 × 10−3 Ω.cm. Such characteristics make these films of interest to photovoltaic devices.


Nanoscale ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 4463-4470 ◽  
Author(s):  
Maxim A. Shcherbina ◽  
Oleg V. Borshchev ◽  
Alexandra P. Pleshkova ◽  
Sergei A. Ponomarenko ◽  
Sergei N. Chvalun

Several generations of carbosilane dendrimers with quaterthiophene end groups were studied by X-ray scattering, differential scanning calorimetry, polarizing optical and atomic force microscopy and molecular modelling.


2001 ◽  
Vol 56 (5-6) ◽  
pp. 369-374 ◽  
Author(s):  
Maya Velitchkova ◽  
Antoaneta Popova ◽  
Tzvetelina Markova

The relationship between thylakoid membrane fluidity and the process of photoinhibition at room and low (4 °C) temperature was investigated. Two different membrane perturbing agents - cholesterol and benzylalcohol were applied to manipulate the fluidity of isolated pea thylakoids. The photochemical activity of photosystem I (PSI) and photosystem II (PSII), polarographically determined, were measured at high light intensity for different time of illumination at both temperatures. The exposure of cholesterol- and benzylalcohol-treated thylakoid membranes to high light intensities resulted in inhibition of both studied photochemical activities, being more pronounced for PSII compared to PSI. Time dependencies of inhibition of PSI and PSII electron transport rates for untreated and membranes with altered fluidity were determined at 20 °C and 4 °C. The effect is more pronounced for PSII activity during low-temperature photoinhibition. The data are discussed in terms of the determining role of physico-chemical properties of thylakoid membranes for the response of photosynthetic apparatus to light stress.


2014 ◽  
Vol 54 (1) ◽  
pp. 345-348 ◽  
Author(s):  
Sebastian Pomplun ◽  
Yansong Wang ◽  
Alexander Kirschner ◽  
Christian Kozany ◽  
Andreas Bracher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document