scholarly journals Coordinating directional switches in pigeon flocks: the role of nonlinear interactions

2021 ◽  
Vol 8 (9) ◽  
Author(s):  
Duxin Chen ◽  
Yongzheng Sun ◽  
Guanbo Shao ◽  
Wenwu Yu ◽  
Hai-Tao Zhang ◽  
...  

The mechanisms inducing unpredictably directional switches in collective and moving biological entities are largely unclear. Deeply understanding such mechanisms is beneficial to delicate design of biologically inspired devices with particular functions. Here, articulating a framework that integrates data-driven, analytical and numerical methods, we investigate the underlying mechanism governing the coordinated rotational flight of pigeon flocks with unpredictably directional switches. Particularly using the sparse Bayesian learning method, we extract the inter-agent interactional dynamics from the high-resolution GPS data of three pigeon flocks, which reveals that the decision-making process in rotational switching flight performs in a more nonlinear manner than in smooth coordinated flight. To elaborate the principle of this nonlinearity of interactions, we establish a data-driven particle model with two potential wells and estimate the mean switching time of rotational direction. Our model with its analytical and numerical results renders the directional switches of moving biological groups more interpretable and predictable. Actually, an appropriate combination of natures, including high density, stronger nonlinearity in interactions, and moderate strength of noise, can enhance such highly ordered, less frequent switches.

Urban Studies ◽  
2021 ◽  
pp. 004209802110140
Author(s):  
Sarah Barns

This commentary interrogates what it means for routine urban behaviours to now be replicating themselves computationally. The emergence of autonomous or artificial intelligence points to the powerful role of big data in the city, as increasingly powerful computational models are now capable of replicating and reproducing existing spatial patterns and activities. I discuss these emergent urban systems of learned or trained intelligence as being at once radical and routine. Just as the material and behavioural conditions that give rise to urban big data demand attention, so do the generative design principles of data-driven models of urban behaviour, as they are increasingly put to use in the production of replicable, autonomous urban futures.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lei Qin ◽  
Xuekun Fu ◽  
Jing Ma ◽  
Manxia Lin ◽  
Peijun Zhang ◽  
...  

AbstractOsteocytes act as mechanosensors in bone; however, the underlying mechanism remains poorly understood. Here we report that deleting Kindlin-2 in osteocytes causes severe osteopenia and mechanical property defects in weight-bearing long bones, but not in non-weight-bearing calvariae. Kindlin-2 loss in osteocytes impairs skeletal responses to mechanical stimulation in long bones. Control and cKO mice display similar bone loss induced by unloading. However, unlike control mice, cKO mice fail to restore lost bone after reloading. Osteocyte Kindlin-2 deletion impairs focal adhesion (FA) formation, cytoskeleton organization and cell orientation in vitro and in bone. Fluid shear stress dose-dependently increases Kindlin-2 expression and decreases that of Sclerostin by downregulating Smad2/3 in osteocytes; this latter response is abolished by Kindlin-2 ablation. Kindlin-2-deficient osteocytes express abundant Sclerostin, contributing to bone loss in cKO mice. Collectively, we demonstrate an indispensable novel role of Kindlin-2 in maintaining skeletal responses to mechanical stimulation by inhibiting Sclerostin expression during osteocyte mechanotransduction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ti-Dong Shan ◽  
Han Yue ◽  
Xue-Guo Sun ◽  
Yue-Ping Jiang ◽  
Li Chen

Abstract Background The complications caused by diabetes mellitus (DM) are the focus of clinical treatment. However, little is known about diabetic enteropathy (DE) and its potential underlying mechanism. Methods Intestinal epithelial cells (IECs) and intestinal epithelial stem cells (IESCs) were harvested from BKS.Cg-Dock7m+/+Leprdb/JNju (DM) mice, and the expression of R-Spondin 3 (Rspo3) was detected by RT-qPCR, Western blotting, immunohistochemistry, and immunofluorescence. The role of Rspo3 in the abnormal differentiation of IECs during DM was confirmed by knockdown experiments. Through miRNA expression profiling, bioinformatics analysis, and RT-qPCR, we further analyzed the differentiation-related miRNAs in the IECs from mice with DM. Results Abnormal differentiation of IECs was observed in the mice with DM. The expression of Rspo3 was upregulated in the IECs from the mice with DM. This phenomenon was associated with Rspo3 overexpression. Additionally, Rspo3 is a major determinant of Lgr5+ stem cell identity in the diabetic state. Microarray analysis, bioinformatics analysis, and luciferase reporter assays revealed that microRNA (miR)-380-5p directly targeted Rspo3. Moreover, miR-380-5p upregulation was observed to attenuate the abnormal differentiation of IECs by regulating Rspo3 expression. Conclusions Together, our results provide definitive evidence of the essential role of Rspo3 in the differentiation of IECs in DM.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4746
Author(s):  
An-Ting Tu ◽  
Jer-An Lin ◽  
Chieh-Hsiu Lee ◽  
Yi-An Chen ◽  
Jung-Tsung Wu ◽  
...  

5-Hydroxymethylfurfural (5-HMF) is a harmful substance generated during the processing of black garlic. Our previous research demonstrated that impregnation of black garlic with epigallocatechin gallate (EGCG) could reduce the formation of 5-HMF. However, there is still a lack of relevant research on the mechanism and structural identification of EGCG inhibiting the production of 5-HMF. In this study, an intermediate product of 5-HMF, 3-deoxyglucosone (3-DG), was found to be decreased in black garlic during the aging process, and impregnation with EGCG for 24 h further reduced the formation of 3-DG by approximately 60% in black garlic compared with that in the untreated control. The aging-mimicking reaction system of 3-DG + EGCG was employed to determine whether the reduction of 3-DG was the underlying mechanism of decreased 5-HMF formation in EGCG-treated black garlic. The results showed that EGCG accelerated the decrease of 3-DG and further attenuated 5-HMF formation, which may be caused by an additional reaction with 3-DG, as evidenced by LC-MS/MS analysis. In conclusion, this study provides new insights regarding the role of EGCG in blocking 5-HMF formation.


2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Richard R. Rodrigues ◽  
Manoj Gurung ◽  
Zhipeng Li ◽  
Manuel García-Jaramillo ◽  
Renee Greer ◽  
...  

AbstractWestern diet (WD) is one of the major culprits of metabolic disease including type 2 diabetes (T2D) with gut microbiota playing an important role in modulating effects of the diet. Herein, we use a data-driven approach (Transkingdom Network analysis) to model host-microbiome interactions under WD to infer which members of microbiota contribute to the altered host metabolism. Interrogation of this network pointed to taxa with potential beneficial or harmful effects on host’s metabolism. We then validate the functional role of the predicted bacteria in regulating metabolism and show that they act via different host pathways. Our gene expression and electron microscopy studies show that two species from Lactobacillus genus act upon mitochondria in the liver leading to the improvement of lipid metabolism. Metabolomics analyses revealed that reduced glutathione may mediate these effects. Our study identifies potential probiotic strains for T2D and provides important insights into mechanisms of their action.


2020 ◽  
Vol 23 (3) ◽  
pp. 353-367
Author(s):  
Yuanyuan Zhou ◽  
Bin Tian ◽  
Tingting Mo ◽  
Zhuoying Fei

Previous research has mainly focused on the determinants of consumers’ complaint channel choices. Little attention has been paid to the behavioral consequences of different complaint channels, particularly different complaint devices. Drawing on spatial crowding perception theory, this study finds that in an online complaint context, consumers’ complaint intensity is shaped by complaint devices that differ in screen size. Crowding perception produced by visually restrictive tension mediates the relationship between the screen size of the complaint device and the complaint intensity. The results of secondary data confirm that consumers’ complaint intensity is higher while complaining through a small-screen device (as opposed to a large-screen one). Three scenario-based experiments are conducted to examine the role of perceived spatial crowding in producing a more intense complaint behavior when complaints are submitted through smaller screen devices (as opposed to larger screen devices). The fourth experiment reveals that crowding perception can be lessened by adjusting certain design elements of the interface, ultimately mitigating the intensity of the complaint submitted through a small-screen device. Our research identifies the specific causality and underlying mechanism of the influence of device type on consumers’ postconsumption behavior, thus contributing to clarify some ambiguities in the literature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Junko Okano ◽  
Yuki Nakae ◽  
Takahiko Nakagawa ◽  
Miwako Katagi ◽  
Tomoya Terashima ◽  
...  

AbstractExposure to moderate doses of ionizing radiation (IR), which is sufficient for causing skin injury, can occur during radiation therapy as well as in radiation accidents. Radiation-induced skin injury occasionally recovers, although its underlying mechanism remains unclear. Moderate-dose IR is frequently utilized for bone marrow transplantation in mice; therefore, this mouse model can help understand the mechanism. We had previously reported that bone marrow-derived cells (BMDCs) migrate to the epidermis-dermis junction in response to IR, although their role remains unknown. Here, we investigated the role of BMDCs in radiation-induced skin injury in BMT mice and observed that BMDCs contributed to skin recovery after IR-induced barrier dysfunction. One of the important mechanisms involved the action of CCL17 secreted by BMDCs on irradiated basal cells, leading to accelerated proliferation and recovery of apoptosis caused by IR. Our findings suggest that BMDCs are key players in IR-induced skin injury recovery.


Sign in / Sign up

Export Citation Format

Share Document