scholarly journals On line-integrals of the diurnal magnetic variations

1. According to electromagnetic theory, the line-integral ∫ H . ds of the magnetic force H taken round any closed curve is equal to 4πI, where I is the electric current threading the curve, H and I being measured in c.g.s. units. Such line-integrals have been calculated by Gauss and many later investigators for various curves on the earth’s surface, in order to determine whether any electric current flows upwards or downwards across the surface. Modern computations for large areas lead in general to values of ∫ H . ds differing from zero by amounts that correspond to current-densities of the order 3·10 -2 ampere/km. 2 . The magnetic field of such currents would account for 2 or 3 per cent, of the earth’s surface field. These results are inconsistent with the direct measurements of the atmospheric electric potential gradient and the ionisation of the air, which indicate a verticalcurrent-density of the order 3·10 -6 amp./km. 2 . If the magnetic estimates are reliable, the discrepancy indicates either that atmospheric electric currents exist which escape measurement, though they are 10,000 times as great as those which are measured, or that the relation ∫ H . ds = 4πI, which is one of the foundations of electromagnetic theory, is not strictly correct. These alternatives are so remarkable that the magnetic evidence must be above suspicion if it is to gain credence. Dr. L. A. Bauer holds that the results got from independent sets of data, for different epochs, and the mutual accordance of the results from neighbouring areas, justify the acceptance of the non-zero line-integrals, and that to explain them away it is necessary to assume quite unlikely systematic errors in the magnetic data. Other investigators show less conviction: for example, Sir Frank Dyson and H. Furner conclude that “though there is some evidence for Prof. Bauer’s results, the existence of vertical electric currents is not indicated with any great certainty.” But though the magnetic evidence may not be conclusive, it cannot be lightly dismissed, and in view of the importance of the question Sir Arthur Schuster has recently urged the desirability of a detailed magnetic survey of a small area as the best means of obtaining a definite conclusion.

An analysis is made of the drift velocity of the (neutral) ionization in a uniform ionosphere under the influences of an electric field and/or atmospheric wind. It is shown that this drift of ionization produces the Ampere body force on the medium; the electric current flows perpendicular to the drift. The motion of a cylinder of ionization, of density differing from the surrounding medium, is then studied. It is found that the motion is electrodynamically stable, but unstable hydrodynamically, if Hall conductivity is appreciable. In the latter event there is rapid accretion of (neutral) ionization on one side of the cylinder, depletion on the other. It is suggested that this is the origin of sporadic E ( E 5 )ionization, and is likely to be an important factor in the production of the long-enduring meteor trails detected by radio methods. Formulae are derived for the horizontal and vertical drift of ionization at all latitudes in a thin ionosphere in which vertical electric currents are prohibited by polarization. Graphs are given which permit derivation of the true wind or field in a given region of the ionosphere from experimental observations of the drift velocities.


Author(s):  
Thorkild M. Rasmussen ◽  
Leif Thorning

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Rasmussen, T. M., & Thorning, L. (1999). Airborne geophysical surveys in Greenland in 1998. Geology of Greenland Survey Bulletin, 183, 34-38. https://doi.org/10.34194/ggub.v183.5202 _______________ Airborne geophysical surveying in Greenland during 1998 consisted of a magnetic project referred to as ‘Aeromag 1998’ and a combined electromagnetic and magnetic project referred to as ‘AEM Greenland 1998’. The Government of Greenland financed both with administration managed by the Geological Survey of Denmark and Greenland (GEUS). With the completion of the two projects, approximately 305 000 line km of regional high-resolution magnetic data and approximately 75 000 line km of detailed multiparameter data (electromagnetic, magnetic and partly radiometric) are now available from government financed projects. Figure 1 shows the location of the surveyed areas with highresolution geophysical data together with the area selected for a magnetic survey in 1999. Completion of the two projects was marked by the release of data on 1 March, 1999. The data are included in the geoscientific databases at the Survey for public use; digital data and maps may be purchased from the Survey.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1092
Author(s):  
Brian R. Page ◽  
Reeve Lambert ◽  
Nina Mahmoudian ◽  
David H. Newby ◽  
Elizabeth L. Foley ◽  
...  

This paper presents results from the integration of a compact quantum magnetometer system and an agile underwater glider for magnetic survey. A highly maneuverable underwater glider, ROUGHIE, was customized to carry an increased payload and reduce the vehicle’s magnetic signature. A sensor suite composed of a vector and scalar magnetometer was mounted in an external boom at the rear of the vehicle. The combined system was deployed in a constrained pool environment to detect seeded magnetic targets and create a magnetic map of the test area. Presented is a systematic magnetic disturbance reduction process, test procedure for anomaly mapping, and results from constrained operation featuring underwater motion capture system for ground truth localization. Validation in the noisy and constrained pool environment creates a trajectory towards affordable littoral magnetic anomaly mapping infrastructure. Such a marine sensor technology will be capable of extended operation in challenging areas while providing high-resolution, timely magnetic data to operators for automated detection and classification of marine objects.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1309
Author(s):  
Yaoxin Zheng ◽  
Shiyan Li ◽  
Kang Xing ◽  
Xiaojuan Zhang

Despite the increased attention that has been given to the unmanned aerial vehicle (UAV)-based magnetic survey systems in the past decade, the processing of UAV magnetic data is still a tough task. In this paper, we propose a novel noise reduction method of UAV magnetic data based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), permutation entropy (PE), correlation coefficient and wavelet threshold denoising. The original signal is first decomposed into several intrinsic mode functions (IMFs) by CEEMDAN, and the PE of each IMF is calculated. Second, IMFs are divided into four categories according to the quartiles of PE, namely, noise IMFs, noise-dominant IMFs, signal-dominant IMFs, and signal IMFs. Then the noise IMFs are removed, and correlation coefficients are used to identify the real signal-dominant IMFs. Finally, the wavelet threshold denoising is applied to the real signal-dominant IMFs, the denoised signal can be obtained by combining the signal IMFs and the denoised IMFs. Both synthetic and field experiments are conducted to verify the effectiveness of the proposed method. The results show that the proposed method can eliminate the interference to a great extent, which lays a foundation for the further interpretation of UAV magnetic data.


2020 ◽  
Vol 4 (2) ◽  
pp. 36-42
Author(s):  
I Ketut Sukarasa ◽  
Ida Bagus Alit Paramarta

Research has been carried out to identify the presence of subsurface water in Selulung Village, Kintamani District, Bangli Regency using 2D geoelectric methods. The work process of this research is the first to collect data directly by using a geoelectric device with Wenner configuration. Electric currents are injected from the surface to the subsurface through the current electrodes which are put on the earth's surface. The collected data is then processed using the Res2Din software version 3.71.118. The software results in the form of 2D images are direct lateral images of subsurface structures. From the three trajectories identified, namely at the coordinates  8°12'18.7"S 115°16'08.3"E the lowest resistivity value was 178 Ohm m with a depth of 10 m which was thought to be a rock layer with surface water content. On line 2 at coordinates 8°12'16.1"S 115°16'09.7"E the resistivity value is 6 ohm.m up to 660,000 ohm.m, the maximum depth obtained is 24 m. This line is thought to be a water-bearing layer because the value of resistance is low. Line 3 which is in the coordinates 8°12'16.3"S 115°15'50.0"E the distribution of resistivity values varies from 42 - 9,400 Ohm m.


2021 ◽  
Author(s):  
Pauline Le Maire ◽  
Denis Thieblemont ◽  
Marc Munschy ◽  
Guillaume Martelet ◽  
Geoffroy Mohn

<p>Continent-Ocean Transitions (COT) and ultra-slow spreading ridges, floored by wide area of exhumed serpentinized mantle, bear strong amplitude magnetic lineations. However, whether these anomalies are linked to inversions of the direction of the magnetization (therefore characterized as isochrones of seafloor spreading) or to structural and lithological contrasts remains an open question. Generally, marine magnetic data acquired at sea surface along profiles, are too low resolution to image the intensity variations of the magnetic field at a kilometric scale. Performing a dense deep tow magnetic survey at a present-day COT or ultra-slow spreading system would be better to determine the sources of the magnetic signal but remains expensive. To go ahead, a valuable alternative to address these questions is to record the magnetic signal on ophiolite representing remnants of COT and oceanic systems sampled in orogenic system. We worked on the Chenaillet Ophiolite (French Alps), which represents a fossil COT or ultra-slow spreading system integrated to the Alpine orogeny. This ophiolite escaped high-pressure metamorphism and has only been weakly deformed during Alpine orogeny, preserving its pre-orogenic structure.</p><p>We performed an UAV magnetic survey using fluxgate magnetometers in complex conditions due to the altitude (> 1800 m), the strong topography variations and the weather conditions (negative temperatures, snow). Despite these difficulties, which highlight the viability of UAV for geophysical measurements, a survey of 20 square kilometers with 219 km of profiling was completed 100 m above ground level. Flight line spacing is 100 m above the ophiolitic basement and 200 m above the sedimentary units. Another magnetic UAV survey was flown with another UAV to map a small area 10 m above ground level. Magnetic anomaly maps were computed after standard processing (e.g., calibration/compensation, temporal variation and regional magnetic field corrections, levelling).</p><p>Our first results evidence well-defined magnetic anomalies clearly linked to serpentinite. This shows that the magnetic signal is of sufficient resolution to contribute to a revision of the cartography of the massif combining geological observations and magnetic data.</p><p>In addition, the magnetic susceptibility was measured on 60 outcrops, to support interpretation.</p><p>In this presentation, we focus on the magnetic acquisition campaigns, processing and 2D/3D interpretations by forward modelling and data inversion. Lastly, two items are discussed: 1) contribution of magnetic UAV surveys for geological mapping; and 2) implication of the results on the Chenaillet massif to discuss the contribution of magnetic mapping to the understanding of the TOC or ultra-slow spreading system.</p>


1971 ◽  
Vol 43 ◽  
pp. 417-421
Author(s):  
A. B. Severny

It is observed that the change of the net magnetic flux associated with flares can exceed 1017 Mx/s, which corresponds according to Maxwell's equation to the e.m.f. ∼ 109 V which is specific for the high energy protons generated in flares. It is shown that this value of e.m.f. can hardly be compensated by e.m.f. of inductance which should appear due to the actually measured motions in a flare generating active region. The values of electric field strength thus found, together with measured values of electric current density (from rotH), leads to an electric conductivity which is 103 times smaller than usually adopted.


Author(s):  
Fred D. Lang

The Input/Loss Method is a unique process which allows for complete thermal understanding of a power plant through explicit determinations of fuel chemistry including fuel water and mineral matter, fuel heating (calorific) value, As-Fired fuel flow, effluent flow, boiler efficiency and system heat rate. Input consists of routine plant data and any parameter which effects system stoichiometrics, including: Stack CO2, Boiler or Stack O2, and, generally, Stack H2O. It is intended for on-line monitoring of coal-fired systems; effluent flow is not measured, plant indicated fuel flow is typically used only for comparison to the computed. The base technology of the Input/Loss Method was documented in companion ASME papers: Parts I, II and III (IJPGC 1998-Pwr-33, IJPGC 1999-Pwr-34 and IJPGC 2000-15079/CD). The Input/Loss Method is protected by US and foreign patents (1994–2004). This Part IV presents details of the Method’s ability to correct any data which effects system stoichiometrics, data obtained either by direct measurements or by assumptions, using multi-dimensional minimization techniques. This is termed the Error Analysis feature of the Input/Loss Method. Addressing errors in combustion effluent measurements is of critical importance for any practical on-line monitoring of a coal-fired unit in which fuel chemistry is being computed. It is based, in part, on an “L Factor” which has been proven to be remarkably constant for a given source of coal; and, indeed, even constant for entire Ranks. The Error Analysis feature assures that every computed fuel chemistry is the most applicable for a given set of system stoichiometrics and effluents. In addition, this paper presents comparisons of computed heating values to grab samples obtained from train deliveries. Such comparisons would not be possible without the Error Analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Baturalp Yalcinkaya ◽  
Fatma Yener ◽  
Oldrich Jirsak ◽  
Funda Cengiz-Callioglu

The electric currents between electrodes in the electrospinning process are based on the movement of charge carriers through the spinning space. The majority of the charge carriers are formed by ionization of the air close to the metallic needle and to the polymer jet. The salt contained in the polymer solution contributes to the concentration of charge carriers, depending on its amount. The conductivity of polymer jets does not significantly affect the current since the jets do not link the electrodes.


Geophysics ◽  
2003 ◽  
Vol 68 (3) ◽  
pp. 988-995 ◽  
Author(s):  
Brian R. S. Minty ◽  
Peter R. Milligan ◽  
Tony Luyendyk ◽  
Timothy Mackey

Regional compilations of airborne magnetic data are becoming more common as national databases grow. Grids of the magnetic survey data are joined together to form geological province‐scale or even continental‐scale compilations. The advantage of these compilations is that large tectonic features and geological provinces can be better mapped and interpreted. We take a holistic approach to the joining of survey grids. The leveling of the grids into a regional compilation is treated as a single inverse problem. We use the weighted least‐squares method to find the best adjustment for each survey grid such that the data value differences in the grid overlap areas are minimized. The method spreads any inconsistencies between grids among all of the grid overlap areas and minimizes the introduction of long‐wavelength errors into the composite grid. This is an improvement on the conventional approach of joining grids sequentially. A comparison of leveled data over Western Australia with diurnally‐corrected long aeromagnetic traverses shows long‐wavelength errors of about 200 nT over distances of more than 5000 km. This is an improvement on the sequential grid‐joining method, which gives errors of about 450 nT over the same distance. The application of the method to a smaller area covered by good quality surveys resulted in long‐wavelength errors of about 30 nT over a distance of 1200 km. This is within the estimated accuracy of the original survey measurements. The new method is also fast—what used to take many weeks of effort can now be achieved in a matter of hours.


Sign in / Sign up

Export Citation Format

Share Document