Rupture of thin films formed during droplet impact

Author(s):  
Rajeev Dhiman ◽  
Sanjeev Chandra

Rupture of liquid films formed during droplet impact on a dry solid surface was studied experimentally. Water droplets (580±70 μm) were photographed as they hit a solid substrate at high velocities (10–30 m s −1 ). Droplet–substrate wettability was varied over a wide range, from hydrophilic to superhydrophobic, by changing the material of the substrate (glass, Plexiglas, wax and alkylketene dimer). Both smooth and rough wax surfaces were tested. Photographs of impact showed that as the impact velocity increased and the film thickness decreased, films became unstable and ruptured internally through the formation of holes. However, the impact velocity at which rupture occurred was found to first decrease and then increase with the liquid–solid contact angle, with wax showing rupture at all impact velocities tested. A thermodynamic stability analysis combined with a droplet spreading model predicted the rupture behaviour by showing that films would be stable at very small or at very large contact angles, but unstable in between. Film rupture was found to be greatly promoted by surface roughness.

Author(s):  
S. Jin ◽  
L. Deng ◽  
J. Yang ◽  
S. Sun ◽  
D. Ning ◽  
...  

This paper presents a smart passive MR damper with fast-responsive characteristics for impact mitigation. The hybrid powering system of the MR damper, composed of batteries and self-powering component, enables the damping of the MR damper to be negatively proportional to the impact velocity, which is called rate-dependent softening effect. This effect can keep the damping force as the maximum allowable constant force under different impact speed and thus improve the efficiency of the shock energy mitigation. The structure, prototype and working principle of the new MR damper are presented firstly. Then a vibration platform was used to characterize the dynamic property and the self-powering capability of the new MR damper. The impact mitigation performance of the new MR damper was evaluated using a drop hammer and compared with a passive damper. The comparison results demonstrate that the damping force generated by the new MR damper can be constant over a large range of impact velocity while the passive damper cannot. The special characteristics of the new MR damper can improve its energy dissipation efficiency over a wide range of impact speed and keep occupants and mechanical structures safe.


Author(s):  
Dmitry Zaitsev ◽  
Andrey Semenov ◽  
Oleg Kabov

Rupture of a subcooled liquid film flowing over an inclined plate with a 150×150 mm heater is studied for a wide range of liquid viscosity (dynamic viscosity μ = (0.91–17.2)x10−3 Pa·s) and plate inclination angle with respect to the horizon (Θ = 3–90 deg). The main governing parameters of the experiment and their respective values are: Reynolds number Re = 0.15–54, heat flux q = 0–224 W/cm2. The effect of the heat flux on the film flow leads to the formation of periodically flowing rivulets and thin film between them. As the heat flux grows the film thickness between rivulets gradually decreases, and, upon reaching a certain threshold heat flux, qidp, the film ruptures in the area between the rivulets. The threshold heat flux increases with the flow rate of liquid and with the liquid viscosity, while the plate inclination angle has little effect on qidp. Criterion Kp, which is traditionally used in the literature to predict thermocapillary film rupture, was found to poorly generalize data for high viscous liquids (ethylene glycol, and aqueous solutions of glycerol) and also data for Θ≤45 deg. The criterion Kp was modified by taking into account characteristic critical film thickness for film rupture under isothermal conditions (no heating), deduced from existing theoretical models. The modified criterion has allowed to successfully generalize data for whole ranges of μ, Re, Θ and q, studied.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Hyun Jun Jeong ◽  
Wook Ryol Hwang ◽  
Chongyoup Kim

We present two-dimensional numerical simulations of the impact and spreading of a droplet containing a number of small particles on a flat solid surface, just after hitting the solid surface, to understand particle effects on spreading dynamics of a particle-laden droplet for the application to the industrial inkjet printing process. The Navier-Stokes equation is solved by a finite-element-based computational scheme that employs the level-set method for the accurate interface description between the drop fluid and air and a fictitious domain method for suspended particles to account for full hydrodynamic interaction. Focusing on the particle effect on droplet spreading and recoil behaviors, we report that suspended particles suppress the droplet oscillation and deformation, by investigating the drop deformations for various Reynolds numbers. This suppressed oscillatory behavior of the particulate droplet has been interpreted with the enhanced energy dissipation due to the presence of particles.


1996 ◽  
Vol 464 ◽  
Author(s):  
M. Vignes-Adler ◽  
B. Prunet-Foch ◽  
F. Legay ◽  
N. Mourougou

ABSTRACTCoating of solid surfaces with uniform, thin liquid films occurs in many industrial processes. A common process consists of spraying some liquids or emulsions on a freshly created solid surface. In this context, we have investigated the impact of a single droplet of various emulsions and surface-active solutions on a solid substrate using a high frequency fluorescent visualization technique (1 picture every 0.25 ms). Whatever the materials in presence, the drop spreads and then retracts under the action of inertia and capillarity respectively. Inertia induces spreading and generates a peripheral rim which is unstable to fingering. Then contact line instabilities appear under the form of festoons with pure liquids which are damped with surface-active solutions and amplified with emulsions. When the adsorption kinetics of the surfactant is slow, the equilibrium surface tension is not restored during the duration of the experiment and the drop can bounce back.


2016 ◽  
Vol 113 (37) ◽  
pp. 10251-10256 ◽  
Author(s):  
Benzhong Zhao ◽  
Christopher W. MacMinn ◽  
Ruben Juanes

Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, the effect of wettability on multiphase flow continues to challenge our microscopic and macroscopic descriptions. Here, we study the impact of wettability on viscously unfavorable fluid–fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts. By systematically varying the wettability of the flow cell over a wide range of contact angles, we find that increasing the substrate’s affinity to the invading fluid results in more efficient displacement of the defending fluid up to a critical wetting transition, beyond which the trend is reversed. We identify the pore-scale mechanisms—cooperative pore filling (increasing displacement efficiency) and corner flow (decreasing displacement efficiency)—responsible for this macroscale behavior, and show that they rely on the inherent 3D nature of interfacial flows, even in quasi-2D media. Our results demonstrate the powerful control of wettability on multiphase flow in porous media, and show that the markedly different invasion protocols that emerge—from pore filling to postbridging—are determined by physical mechanisms that are missing from current pore-scale and continuum-scale descriptions.


2015 ◽  
Author(s):  
Ali Mohtat ◽  
Ravi Challa ◽  
Solomon C. Yim ◽  
Carolyn Q. Judge

Numerical simulation and prediction of short duration hydrodynamic impact loading on a generic wedge impacting a water free-surface is investigated. The fluid field is modeled using a finite element (FE) based arbitrary Lagrangian-Eulerian (ALE) formulation and the structure is modeled using a standard Lagrangian FE approximation. Validation of the numerical method against experimental test data and closed form analytical solutions shows that the ALE-FE/FE continuum approach captures the impact behavior accurately. A detailed sensitivity analysis is conducted to study the role of air compressibility, deadrise angle, and impact velocity in estimation of maximum impact pressures. The pressure field is found to be insensitive to air compressibility effect for a wide range of impact velocities and deadrise angles. A semi-analytical prediction model is developed for estimation of maximum impact pressures that correlates deadrise angle, impact velocity, and a nonlinear interaction term that couples hydrodynamic effects between these parameters. The numerical method is also used to examine the intrinsic physics of water impact on a high-speed planing hull with the goal of predicting slamming loads and resulting motions.


2019 ◽  
Vol 88 (2) ◽  
pp. 20901 ◽  
Author(s):  
Mouloud Driouche ◽  
Tahar Rezoug ◽  
Mohammed El Ganaoui

The substrate melting can significantly improve the properties of plasma spray coatings. Indeed the adhesion of the projected particles to the substrate can be ameliorated by the substrate melting. In this article, a numerical model is developed to study the dynamics of fluids and heat transfer with liquid/solid phase change during impact of a fully melted alumina particle on an aluminum solid substrate, taking into account of the substrate melting. The model is based on solving the Navier-Stokes and energy equations with liquid / solid phase change. These equations are coupled with the fluid of volume method (VOF), to follow the free surface of the particle during its spreading and solidification. The finite volume method is used to discretize the equations in a 2D axisymmetric domain. A comparison with the published experimental results was carried out to validate this numerical model. Simulations were performed for different initial droplet diameters to study its effect on droplet spreading as well as on substrate melting. It has been observed that the substrate melting begins before the droplet spreads completely; the substrate melting reaches its maximum when the droplet is close to its total solidification. Droplet spreading and substrate melting are more important for large sizes droplets.


2019 ◽  
Vol 871 ◽  
Author(s):  
José Manuel Gordillo ◽  
Guillaume Riboux

When a drop of a low-viscosity liquid of radius $R$ impacts against an inclined smooth solid substrate at a velocity $V$, a liquid sheet of thickness $H_{t}\ll R$ is expelled at a velocity $V_{t}\gg V$. If the impact velocity is such that $V>V^{\ast }$, with $V^{\ast }$ the critical velocity for splashing, the edge of the expanding liquid sheet lifts off from the wall as a consequence of the gas lubrication force at the wedge region created between the advancing liquid front and the substrate. Here we show that the magnitude of the gas lubrication force is limited by the values of the slip length $\ell _{\unicode[STIX]{x1D707}}$ at the gas–liquid interface and of the slip length $\ell _{g}\propto \unicode[STIX]{x1D706}$ at the solid, with $\unicode[STIX]{x1D706}$ the mean free path of gas molecules. We demonstrate that the splashing regime changes depending on the value of the ratio $\ell _{\unicode[STIX]{x1D707}}/\ell _{g}$ – a fact explaining the spreading–splashing–spreading–splashing transition for a fixed (low) value of the gas pressure as the drop impact velocity increases (Xu et al., Phys. Rev. Lett., vol. 94, 2005, 184505; Hao et al., Phys. Rev. Lett., vol. 122, 2019, 054501). We also provide an expression for $V^{\ast }$ as a function of the inclination angle of the substrate, the drop radius $R$, the material properties of the liquid and the gas, and the mean free path $\unicode[STIX]{x1D706}$, in very good agreement with experiments.


2017 ◽  
Vol 31 (34) ◽  
pp. 1750325 ◽  
Author(s):  
Han Cheng ◽  
Chao Qiu ◽  
Changchun Zhou ◽  
Xuebin Sun ◽  
Rui Yang

A new experiment based on visualization technology is designed to study the spreading characteristics of droplet impacting on canopy fabric. The processes of droplet impacting on 66 type polyamide grid silk are captured. The experimental results show that the spreading characteristics are also affected by fabric pretension and fabric permeability. The pretension is favorable for the droplet to reach the final equilibrium stage. The impact velocity determines the initial kinetic energy and plays a major role in the droplet spreading. The fabric permeability determines the wettability and has different effects on spreading characteristics under different working conditions. In addition, the above factors can enhance the two competitive processes of spreading and imbibing at the same time. The spreading characteristics depend on which process is the dominant one.


Author(s):  
Metin Muradoglu ◽  
Savas Tasoglu

Impact and spreading of a viscous micro droplet on dry solid surfaces are studied computationally using a finite-difference/front-tracking method. The problem is motivated by single cell epitaxy developed for printing biological cells on a solid substrate using ink-jet printer technology. In this study, we consider impact and spreading of a simple droplet on a partially wetting substrate as a first step in developing a complete compound droplet model for the single cell epitaxi. The numerical method is general and can treat non-wetting, partially wetting and fully wetting cases but the focus here is placed on partially wetting substrates. The contact angle is specified dynamically using the empirical correlation given by Kistler (1993). In addition, a precursive film model is also used especially for the highly wettable cases, i.e., the static contact angle is smaller than 30° due to numerical difficulty of resolving thin liquid later penetrating into surrounding gas near the solid surface. The numerical method is first applied to simple droplet spreading and the results are compared with experimental data of Sikalo et al. (2005). Then the effects of governing non-dimensional numbers on the spreading rate, apparent contact angle and deformation of the droplet are investigated. Finally a few preliminary results are presented for the impact and spreading of a compound microdroplet on a partially wetting surface.


Sign in / Sign up

Export Citation Format

Share Document