scholarly journals Tight coupling of primary production and marine mammal reproduction in the Southern Ocean

2015 ◽  
Vol 282 (1806) ◽  
pp. 20143137 ◽  
Author(s):  
J. Terrill Paterson ◽  
Jay J. Rotella ◽  
Kevin R. Arrigo ◽  
Robert A. Garrott

Polynyas are areas of open water surrounded by sea ice and are important sources of primary production in high-latitude marine ecosystems. The magnitude of annual primary production in polynyas is controlled by the amount of exposure to solar radiation and sensitivity to changes in sea-ice extent. The degree of coupling between primary production and production by upper trophic-level consumers in these environments is not well understood, which prevents reliable predictions about population trajectories for species at higher trophic levels under potential future climate scenarios. In this study, we find a strong, positive relationship between annual primary production in an Antarctic polynya and pup production by ice-dependent Weddell seals. The timing of the relationship suggests reproductive effort increases to take advantage of high primary production occurring in the months after the birth pulse. Though the proximate causal mechanism is unknown, our results indicate tight coupling between organisms at disparate trophic levels on a short timescale, deepen our understanding of marine ecosystem processes, and raise interesting questions about why such coupling exists and what implications it has for understanding high-latitude ecosystems.

2001 ◽  
Vol 33 ◽  
pp. 493-500 ◽  
Author(s):  
Raymond C. Smith ◽  
Sharon E. Stammerjohn

AbstractThe western Antarctic Peninsula (WAP) region has experienced a statistically significant warming trend during the past half-century. In addition, a statistically significant anticorrelation between air temperatures and sea-ice extent, as determined from satellite passive-microwave data during the past two decades, has been observed for this region. Consistent with this strong coupling, sea-ice extent in the WAP area has trended down during this period of satellite observations. Further, much of the variability in both air temperature and sea ice in the WAP region has been shown to be influenced by contrasting maritime (warm, moist) and continental (cold, dry) climate regimes. As part of the Palmer Long Term Ecological Research program, the ecological influence of these trends and variability is being studied, and effects have already been demonstrated at all trophic levels. Here we extend earlier observations to include the past decade and focus on the annual cycles of air temperature and sea-ice extent for the past few years, with the aim of placing these recent observations within the context of changes seen in the longer-term records. The more recent years have seen an increasing maritime influence in the WAP region, with corresponding effects on the marine ecosystem.


2021 ◽  
Author(s):  
Stanislav D. Martyanov ◽  
Anton Y. Dvornikov ◽  
Vladimir A. Ryabchenko ◽  
Dmitry V. Sein

<p>A regional coupled eco-hydrodynamic model of the Barents and Kara Seas based on the MITgcm has been developed. The biogeochemical module is based on a 7-component model of pelagic biogeochemistry including the ocean carbon cycle. This regional model allows revealing and explaining the main mechanisms of the interaction between marine dynamic and biogeochemical processes in the Barents and Kara Seas under a changing climate. We present the main results of simulations for the past (1975-2005) and future (2035-2065) climate.</p><p>A clear relationship between the marginal ice zone area and primary production has been obtained, proving the importance of this zone in the functioning of the marine ecosystem. The interannual variability of the integrated primary production and the total sea ice area demonstrates an antiphase behavior, which means that the reduced sea ice cover area in the previous winter is one of the main reasons for the increase in primary production in the current year.</p><p>The model simulations demonstrate that, of all the external factors, sea ice area plays a primary role in the formation of primary production: in the overwhelming majority of cases, the contribution of the ice area prevails, and the pattern "more ice - less primary production" and vice versa is fulfilled in the Barents and Kara Seas. The effect of a decrease of incoming short-wave radiation becomes significant only when a significant decrease of the ice area occurs.</p><p>Compared to the period 1975-2005, the simulated total primary production in the Barents and Kara Seas is much higher for the period 2035-2065, while the sea ice area significantly decreases.</p><p>A regression dependence has been obtained for the total annual primary production as a function of sea ice area and incoming short-wave radiation. Its validity is verified for both past (dependent) and future (independent) climatic periods. It justifies the use of such simple statistical model for quick estimates of the primary production in the Barents and Kara Seas.</p><p>Acknowledgements: The research was performed in the framework of the state assignment of the Ministry of Science and Higher Education of Russia (theme No. 0128-2021-0014). This work used resources of the Deutsches Klimarechenzentrum (DKRZ) granted by its Scientific Steering Committee (WLA) under project ID ba1206.</p>


Science ◽  
2020 ◽  
Vol 369 (6500) ◽  
pp. 198-202 ◽  
Author(s):  
K. M. Lewis ◽  
G. L. van Dijken ◽  
K. R. Arrigo

Historically, sea ice loss in the Arctic Ocean has promoted increased phytoplankton primary production because of the greater open water area and a longer growing season. However, debate remains about whether primary production will continue to rise should sea ice decline further. Using an ocean color algorithm parameterized for the Arctic Ocean, we show that primary production increased by 57% between 1998 and 2018. Surprisingly, whereas increases were due to widespread sea ice loss during the first decade, the subsequent rise in primary production was driven primarily by increased phytoplankton biomass, which was likely sustained by an influx of new nutrients. This suggests a future Arctic Ocean that can support higher trophic-level production and additional carbon export.


2021 ◽  
Vol 15 (12) ◽  
pp. 5473-5482
Author(s):  
Jinlei Chen ◽  
Shichang Kang ◽  
Wentao Du ◽  
Junming Guo ◽  
Min Xu ◽  
...  

Abstract. The retreat of sea ice has been found to be very significant in the Arctic under global warming. It is projected to continue and will have great impacts on navigation. Perspectives on the changes in sea ice and navigability are crucial to the circulation pattern and future of the Arctic. In this investigation, the decadal changes in sea ice parameters were evaluated by the multi-model from the Coupled Model Inter-comparison Project Phase 6, and Arctic navigability was assessed under two shared socioeconomic pathways (SSPs) and two vessel classes with the Arctic transportation accessibility model. The sea ice extent shows a high possibility of decreasing along SSP5-8.5 under current emissions and climate change. The decadal rate of decreasing sea ice extent will increase in March but decrease in September until 2060, when the oldest ice will have completely disappeared and the sea ice will reach an irreversible tipping point. Sea ice thickness is expected to decrease and transit in certain parts, declining by −0.22 m per decade after September 2060. Both the sea ice concentration and volume will thoroughly decline at decreasing decadal rates, with a greater decrease in volume in March than in September. Open water ships will be able to cross the Northern Sea Route and Northwest Passage between August and October during the period from 2045 to 2055, with a maximum navigable percentage in September. The time for Polar Class 6 (PC6) ships will shift to October–December during the period from 2021 to 2030, with a maximum navigable percentage in October. In addition, the central passage will be open for PC6 ships between September and October during 2021–2030.


1990 ◽  
Vol 14 ◽  
pp. 365-365
Author(s):  
N.W. Young ◽  
M. De Angelis ◽  
D. Davies

An ice core, drilled near the margin of the Law Dome ice cap at Cape Folger, has been analysed for trace chemical content. The concentration of the major anions and cations has been measured on samples selected from the ice core to give information on the major environmental changes which have occurred in the period 6–26 ka B.P. The chemical species can be divided into two fractions representing the two major sources of trace chemicals; marine and continental sources. Four species are chosen to illustrate the main features in the record; aluminium as an indicator of the continental fraction, sodium and magnesium as indicators of the marine fraction and methane sulphonic acid (MSA). Sodium and magnesium concentrations in the Law Dome core are predominantly derived from marine sources, although they usually include also small contributions from the continental sources. MSA has a marine biogenic source and exhibits a pattern which is generally unrelated to the variations in the two main fractions. Measured oxygen isotope ratios provide an additional data source. Concentrations of the same species in the Dome C core (De Angelis and others, 1982; Saigne and Legrand, 1987) are used as indicators of the global background atmospheric chemical content, and by inter-comparison of the records from the two cores are used to derive a proxy chronology for the Law Dome core.The interval in each core corresponding to the final stages of the Last Glacial Maximum (LGM) can be identified from the oxygen isotope records (Budd and Morgan, 1977; Lorius and others, 1984). Both cores have high aluminium concentrations in this interval reducing to very low concentrations towards the end of the transition to the Holocene. A similar sharp change from high to very low concentration is also observed for MSA. Very low concentrations of other species are also observed in this interval in the transition period. By assuming that these changes in the two cores are contemporaneous, the age scale from the Dome C core (Lorius and others, 1984) can be applied to the Law Dome core. An age of 13 ka B.p. is assigned to the very clean interval near the end of the transition. Other, less obvious, events in the chemical and isotope records distinguish intervals corresponding to ages of approximately 7.5, 15.5, and 26 ka B.P. Ages for intermediate intervals are derived by interpolation and reference to a modelled age-depth relation.The records from each of the cores for MSA and the continental fraction, represented by aluminium, show similar features at the Law Dome site as at Dome C. But the records for the marine fraction show distinct differences. On Law Dome there is a clear trend of decreasing concentration with depth, consistent with the ice at greater depth having an origin at higher elevation further inland on the ice cap. Very low concentrations occur in the lower part of the core, which includes the interval corresponding to the LGM. By way of contrast, at Dome C the concentration of sodium in the interval corresponding to the Holocene is low, but relatively higher in the LGM interval. The concentrations during the LGM, of both the marine and continental fractions, are lower in Law Dome by a factor generally between 1 and 2 than those at Dome C as a result of dilution caused by the higher precipitation and snow accumulation rates near the coast.For interpretation of the records, the concentrations in the Dome C core are assumed to indicate changes in the global background atmospheric loading and atmospheric circulation. On Law Dome, the general trend of decreasing concentra- tion with depth for the marine fraction is modulated by variations in the background atmospheric loading, and the effect of variations in past ice sheet and sea ice extent and thus distance to the source. At about 11 ka B.P., sodium and magnesium concentrations increase sharply to about three times the background level, and are maintained till about 9.5 ka B.P. This event is not apparent in the Dome C record. During the period 6–8 ka B P., sodium and magnesium concentrations are higher by a factor between 1.5 and 2 in conjunction with colder (more negative) values of the oxygen isotope ratio. There is some evidence of similar variations in the Dome C record.This suggests two separate scenarios. For the period 9.5–11 ka B P., one or more of the following events probably occurred: a change in the seasonal pattern of variation in sea ice extent and distribution; lesser sea ice extent; more open water closer to the coast; increased storminess in the coastal region, each of which could lead to an increased supply of material with marine source (sodium and magnesium) by either more vigorous atmospheric circulation or less distance to the source. Coincidentally, increased storminess is consistent with an increased fraction of open water in the sea ice zone. But there is apparently no change in the concnetration of MSA above background levels during this period. This could provide a constraint on the possible mechanisms causing the observed event. For the more recent period, 6–8 ka B.P., the changes found in both cores probably reflect climatic variation on a broader hemispheric or global scale, involving lower temperatures in at least the high latitudes, probably increased zonal atmospheric circulation, and perhaps changes in the seasonal sea ice distribution and total extent.


2021 ◽  
pp. 1
Author(s):  
Rachel Kim ◽  
Bruno Tremblay ◽  
Charles Brunette ◽  
Robert Newton

AbstractThinning sea ice cover in the Arctic is associated with larger interannual variability in the minimum Sea Ice Extent (SIE). The current generation of forced or fully coupled models, however, have difficulty predicting SIE anomalies from the long-term trend, highlighting the need to better identify the mechanisms involved in the seasonal evolution of sea ice cover. One such mechanism is Coastal Divergence (CD), a proxy for ice thickness anomalies based on late winter ice motion, quantified using Lagrangian ice tracking. CD gains predictive skill through the positive feedback of surface albedo anomalies, mirrored in Reflected Solar Radiation (RSR), during melt season. Exploring the dynamic and thermodynamic contributions to minimum SIE predictability, RSR, initial SIE (iSIE) and CD are compared as predictors using a regional seasonal sea ice forecast model for July 1, June 1 and May 1 forecast dates for all Arctic peripheral seas. The predictive skill of June RSR anomalies mainly originates from open water fraction at the surface, i.e. June iSIE and June RSR have equal predictive skill for most seas. The finding is supported by the surprising positive correlation found between June Melt Pond Fraction (MPF) and June RSR in all peripheral seas: MPF anomalies indicate presence of ice or open water that is key to creating minimum SIE anomalies. This contradicts models that show correlation between melt onset, MPF and the minimum SIE. A hindcast model shows that for a May 1 forecast, CD anomalies have better predictive skill than RSR anomalies for most peripheral seas.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Laura Payton ◽  
Céline Noirot ◽  
Claire Hoede ◽  
Lukas Hüppe ◽  
Kim Last ◽  
...  

AbstractThe zooplankter Calanus finmarchicus is a member of the so-called “Calanus Complex”, a group of copepods that constitutes a key element of the Arctic polar marine ecosystem, providing a crucial link between primary production and higher trophic levels. Climate change induces the shift of C. finmarchicus to higher latitudes with currently unknown impacts on its endogenous timing. Here we generated a daily transcriptome of C. finmarchicus at two high Arctic stations, during the more extreme time of Midnight Sun, the summer solstice. While the southern station (74.5 °N) was sea ice-free, the northern one (82.5 °N) was sea ice-covered. The mRNAs of the 42 samples have been sequenced with an average of 126 ± 5 million reads (mean ± SE) per sample, and aligned to the reference transcriptome. We detail the quality assessment of the datasets and the complete annotation procedure, providing the possibility to investigate daily gene expression of this ecologically important species at high Arctic latitudes, and to compare gene expression according to latitude and sea ice-coverage.


Author(s):  
Hugh W Ducklow ◽  
Karen Baker ◽  
Douglas G Martinson ◽  
Langdon B Quetin ◽  
Robin M Ross ◽  
...  

The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba . Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 2°C increase in the annual mean temperature and a 6°C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.6°C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in ice-dependent Adélie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients extending along the WAP and the presence of monitoring systems, field stations and long-term research programmes make the region an invaluable observatory of climate change and marine ecosystem response.


Sign in / Sign up

Export Citation Format

Share Document