scholarly journals A horizontally transferred nuclear gene is associated with microhabitat variation in a natural plant population

2015 ◽  
Vol 282 (1821) ◽  
pp. 20152453 ◽  
Author(s):  
Honor C. Prentice ◽  
Yuan Li ◽  
Mikael Lönn ◽  
Anders Tunlid ◽  
Lena Ghatnekar

Horizontal gene transfer involves the non-sexual interspecific transmission of genetic material. Even if they are initially functional, horizontally transferred genes are expected to deteriorate into non-expressed pseudogenes, unless they become adaptively relevant in the recipient organism. However, little is known about the distributions of natural transgenes within wild species or the adaptive significance of natural transgenes within wild populations. Here, we examine the distribution of a natural plant-to-plant nuclear transgene in relation to environmental variation within a wild population. Festuca ovina is polymorphic for an extra (second) expressed copy of the nuclear gene ( PgiC ) encoding cytosolic phosphoglucose isomerase, with the extra PgiC locus having been acquired horizontally from the distantly related grass genus Poa. We investigated variation at PgiC in samples of F. ovina from a fine-scale, repeating patchwork of grassland microhabitats, replicated within spatially separated sites. Even after accounting for spatial effects, the distributions of F. ovina individuals carrying the additional PgiC locus, and one of the enzyme products encoded by the locus, are significantly associated with fine-scale habitat variation. Our results suggest that the PgiC transgene contributes, together with the unlinked ‘native’ PgiC locus, to local adaptation to a fine-scale mosaic of edaphic and biotic grassland microhabitats.

2021 ◽  
Vol 22 (9) ◽  
pp. 4484
Author(s):  
Ewa Filip ◽  
Lidia Skuza

Horizontal gene transfer (HGT)- is defined as the acquisition of genetic material from another organism. However, recent findings indicate a possible role of HGT in the acquisition of traits with adaptive significance, suggesting that HGT is an important driving force in the evolution of eukaryotes as well as prokaryotes. It has been noted that, in eukaryotes, HGT is more prevalent than originally thought. Mitochondria and chloroplasts lost a large number of genes after their respective endosymbiotic events occurred. Even after this major content loss, organelle genomes still continue to lose their own genes. Many of these are subsequently acquired by intracellular gene transfer from the original plastid. The aim of our review was to elucidate the role of chloroplasts in the transfer of genes. This review also explores gene transfer involving mitochondrial and nuclear genomes, though recent studies indicate that chloroplast genomes are far more active in HGT as compared to these other two DNA-containing cellular compartments.


1976 ◽  
Vol 76 (2) ◽  
pp. 173-181 ◽  
Author(s):  
Margaret E. Wallace ◽  
Felicity J. MacSwiney

SUMMARYThe spread of a 'cream' mutant in a wild population of house mice is reported. The hypothesis that the gene responsible for the colour, extreme chinchilla, ce, has spread because of linkage with a major gene for warfarin-resistance, is tested by a linkage backcross.The results prove that a major gene does exist, that it is very closely linked with frizzy, fr, in chromosome 7, which in turn is linked with ce, that it is fully dominant in females at 4 months of age, and that its partial dominance in males is under the control of modifiers.The symbol War is proposed for the gene. Its position in chromosome 7 is analagous with the position of the resistant gene, Rw2, in the rat in the analagous chromosome.The adaptive significance of this finding is discussed, as also are reports of certain other mutants in wild populations of mice.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jigui Yuan ◽  
Hungdu Lin ◽  
Lisheng Wu ◽  
Xuan Zhuang ◽  
Junkai Ma ◽  
...  

The large yellow croaker, Larimichthys crocea, was once the most abundant and economically important marine fish in China. Thus far, it has also been the most successful mariculture fish species in China. However, its wild stock severely declined in the 1970s because of overexploitation, and therefore hatchery release has been carried out for stock enhancement since 2000. As a migratory fish, large yellow croaker was divided into three geographical stocks according to ambiguous morphological and biological characteristics in early documents. To investigate the identity of wild large yellow croaker populations and assess the influence of hatchery supplementation on wild populations, a total of 2,785 cultured individuals and 591 wild individuals were collected from 91 hatcheries and six wild populations along the coast of mainland China and analyzed using two mitochondrial genes [cytochrome oxidase I (COI) and cytochrome b (Cyt b)] and one nuclear gene (RyR3). The higher haplotype diversity and moderate nucleotide diversity of wild large yellow croaker indicated that overexploitation, which caused a sharp decrease in biomass, did not lead to a loss of genetic diversity. According to phylogenetic construction and network analysis, the absence of a significant population structure pattern revealed a single panmictic population of wild large yellow croaker with exception of a population collected from the Sansha Bay, which showed high genetic relatedness to the cultured population, suggesting significant genetic effects resulting from stock enhancement. Overall, our study suggests no genetic differentiation in the entire wild population of large yellow croaker, which means that we have great flexibility in mixing and matching farmed and wild populations. However, since the result showed that domestication, the relaxation of purifying selection, increased genetic loads, and maladapted farmed fish will be at a selective disadvantage when cultured juveniles are released in the wild, the effectiveness of stock enhancement and the negative impact of hatchery-wild fish hybridization on the wild population must be carefully evaluated in future.


2014 ◽  
Vol 83 (4) ◽  
pp. 317-323 ◽  
Author(s):  
Maria Virginia Sanchez-Puerta

This review focuses on plant-to-plant horizontal gene transfer (HGT) involving the three DNA-containing cellular compartments. It highlights the great incidence of HGT in the mitochondrial genome (mtDNA) of angiosperms, the increasing number of examples in plant nuclear genomes, and the lack of any convincing evidence for HGT in the well-studied plastid genome of land plants. Most of the foreign mitochondrial genes are non-functional, generally found as pseudogenes in the recipient plant mtDNA that maintains its functional native genes. The few exceptions involve chimeric HGT, in which foreign and native copies recombine leading to a functional and single copy of the gene. Maintenance of foreign genes in plant mitochondria is probably the result of genetic drift, but a possible evolutionary advantage may be conferred through the generation of genetic diversity by gene conversion between native and foreign copies. Conversely, a few cases of nuclear HGT in plants involve functional transfers of novel genes that resulted in adaptive evolution. Direct cell-to-cell contact between plants (e.g. host-parasite relationships or natural grafting) facilitate the exchange of genetic material, in which HGT has been reported for both nuclear and mitochondrial genomes, and in the form of genomic DNA, instead of RNA. A thorough review of the literature indicates that HGT in mitochondrial and nuclear genomes of angiosperms is much more frequent than previously expected and that the evolutionary impact and mechanisms underlying plant-to-plant HGT remain to be uncovered.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3065-3065
Author(s):  
Munevver Cinar ◽  
Steven Flygare ◽  
Marina Mosunjac ◽  
Ganji Nagaraju ◽  
Dongkyoo Park ◽  
...  

Spatial genetic heterogeneity is a characteristic phenomenon that influences multiple myeloma's (MM) phenotype and drug sensitivity (Rasche L. et al and Bolli N et al.). Hence, the branch model of tumor evolution is not sufficient to explain the disorganized architecture observed in MM. In this study, we investigated whether MM ctDNA horizontal gene transfer (HGT) affect tumor genetic architecture and drug sensitivity, resembling what is seen in prokaryotes, and elucidated the mechanisms involved in the mobilization of genetic material from one cell to another. We identified that plasma from patients with MM transmits drug sensitivity or resistance to cells in culture. This transmission of drug sensitivity is mediated by ctDNA transfer of oncogenes to a host cell. Importantly, in vitro and in vivo demonstrated that ctDNA mainly targets cells resembling the cell of origin (tropism). Karyotype spreads and whole genome sequencing demonstrated that once patients ctDNA encounters host cells, it migrates into the nucleus where it ultimately integrates into the cell's genome. Integration to the genome was confirmed to be targeted to myeloma cells. Further sequencing analysis of multiple MM samples identified ctDNA tropism and integration is dependent on the 5' and 3' end presence of transposable elements (TE), particularly of the MIR and ALUsq family. These results were further validated by TE mediated delivery of GFP into MM cells in vitro and HSVTK in tumors of mouse xenografts. In conclusion, this data indicates for the first time that TE mediates MM ctDNA HGT into homologous tumor cells shaping the hierarchical architecture of tumor clones and affecting tumor response to treatment. Therapeutically, this unique quality of ctDNA can be exploited for targeted gene therapeutic approaches in MM and potentially other cancers. Disclosures Bernal-Mizrachi: Kodikas Therapeutic Solutions, Inc: Equity Ownership; TAKEDA: Research Funding; Winship Cancer Institute: Employment, Patents & Royalties.


2020 ◽  
Author(s):  
Andrew T. Ozga ◽  
Timothy H. Webster ◽  
Ian C. Gilby ◽  
Melissa A. Wilson ◽  
Rebecca S. Nockerts ◽  
...  

AbstractThe ability to generate genomic data from wild animal populations has the potential to give unprecedented insight into the population history and dynamics of species in their natural habitats. However, in the case of many species, it is impossible legally, ethically, or logistically to obtain tissues samples of high-quality necessary for genomic analyses. In this study we evaluate the success of multiple sources of genetic material (feces, urine, dentin, and dental calculus) and several capture methods (shotgun, whole-genome, exome) in generating genome-scale data in wild eastern chimpanzees (Pan troglodytes schweinfurthii) from Gombe National Park, Tanzania. We found that urine harbors significantly more host DNA than other sources, leading to broader and deeper coverage across the genome. Urine also exhibited a lower rate of allelic dropout. We found exome sequencing to be far more successful than both shotgun sequencing and whole-genome capture at generating usable data from low-quality samples such as feces and dental calculus. These results highlight urine as a promising and untapped source of DNA that can be noninvasively collected from wild populations of many species.


2017 ◽  
Vol 284 (1852) ◽  
pp. 20162872 ◽  
Author(s):  
L. M. Aplin ◽  
J. Morand-Ferron

There has been extensive game-theoretic modelling of conditions leading to equilibria of producer–scrounger dichotomies in groups. However there is a surprising paucity of experimental evidence in wild populations. Here, we examine producer–scrounger games in five subpopulations of birds feeding at a socially learnt foraging task. Over four weeks, a bimodal distribution of producers and scroungers emerged in all areas, with pronounced and consistent individual tactic specialization persisting over 3 years. Tactics were unrelated to exploratory personality, but correlated with latency to contact and learn the foraging task, with the late arrivers and slower learners more likely to adopt the scrounging role. Additionally, the social environment was also important: at the broad scale, larger subpopulations with a higher social density contained proportionally more scroungers, while within subpopulations scroungers tended to be central in the social network and be observed in larger foraging flocks. This study thus provides a rare example of a stable, dimorphic distribution of producer–scrounger tactics in a wild population. It further gives support across multiple scales for a major prediction of social foraging theory; that the frequency of scroungers increases with group size.


Sign in / Sign up

Export Citation Format

Share Document