scholarly journals Genetic diversity is largely unpredictable but scales with museum occurrences in a species-rich clade of Australian lizards

2017 ◽  
Vol 284 (1854) ◽  
pp. 20162588 ◽  
Author(s):  
Sonal Singhal ◽  
Huateng Huang ◽  
Pascal O. Title ◽  
Stephen C. Donnellan ◽  
Iris Holmes ◽  
...  

Genetic diversity is a fundamental characteristic of species and is affected by many factors, including mutation rate, population size, life history and demography. To better understand the processes that influence levels of genetic diversity across taxa, we collected genome-wide restriction-associated DNA data from more than 500 individuals spanning 76 nominal species of Australian scincid lizards in the genus Ctenotus . To avoid potential biases associated with variation in taxonomic practice across the group, we used coalescent-based species delimitation to delineate 83 species-level lineages within the genus for downstream analyses. We then used these genetic data to infer levels of within-population genetic diversity. Using a phylogenetically informed approach, we tested whether variation in genetic diversity could be explained by population size, environmental heterogeneity or historical demography. We find that the strongest predictor of genetic diversity is a novel proxy for census population size: the number of vouchered occurrences in museum databases. However, museum occurrences only explain a limited proportion of the variance in genetic diversity, suggesting that genetic diversity might be difficult to predict at shallower phylogenetic scales.

2021 ◽  
Author(s):  
Yann Spöri ◽  
Fabio Stoch ◽  
Simon Dellicour ◽  
C. William Birky ◽  
Jean-François Flot

K/θ is a method to delineate species that rests on the calculation of the ratio between the average distance K separating two putative species-level clades and the genetic diversity θ of these clades. Although this method is explicitly rooted in population genetic theory, it was never benchmarked due to the absence of a program allowing automated analyses. For the same reason, its application by hand was limited to small datasets of a few tens of sequences. We present an automatic implementation of the K/θ method, dubbed KoT (short for "K over Theta"), that takes as input a FASTA file, builds a neighbour-joining tree, and returns putative species boundaries based on a user-specified K/θ threshold. This automatic implementation avoids errors and makes it possible to apply the method to datasets comprising many sequences, as well as to test easily the impact of choosing different K/θ threshold ratios. KoT is implemented in Haxe, with a javascript webserver interface freely available at https://eeg-ebe.github.io/KoT/ .


2018 ◽  
Author(s):  
Shuqing Xu ◽  
Jessica Stapley ◽  
Saskia Gablenz ◽  
Justin Boyer ◽  
Klaus J. Appenroth ◽  
...  

AbstractMutation rate and effective population size (Ne) jointly determine intraspecific genetic diversity, but the role of mutation rate is often ignored. We investigate genetic diversity, spontaneous mutation rate andNein the giant duckweed (Spirodela polyrhiza). Despite its large census population size, whole-genome sequencing of 68 globally sampled individuals revealed extremely low within-species genetic diversity. Assessed under natural conditions, the genome-wide spontaneous mutation rate is at least seven times lower than estimates made for other multicellular eukaryotes, whereasNeis large. These results demonstrate that low genetic diversity can be associated with large-Nespecies, where selection can reduce mutation rates to very low levels, and accurate estimates of mutation rate can help to explain seemingly counterintuitive patterns of genome-wide variation.One Sentence SummaryThe low-down on a tiny plant: extremely low genetic diversity in an aquatic plant is associated with its exceptionally low mutation rate.


2021 ◽  
Author(s):  
María Eugenia Barrandeguy ◽  
María Victoria García

Genetic diversity comprises the total of genetic variability contained in a population and it represents the fundamental component of changes since it determines the microevolutionary potential of populations. There are several measures for quantifying the genetic diversity, most notably measures based on heterozygosity and measures based on allelic richness, i.e. the expected number of alleles in populations of same size. These measures differ in their theoretical background and, in consequence, they differ in their ecological and evolutionary interpretations. Therefore, in the present chapter these measures of genetic diversity were jointly analyzed, highlighting the changes expected as consequence of gene flow and genetic drift. To develop this analysis, computational simulations of extreme scenarios combining changes in the levels of gene flow and population size were performed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Om P. Rajora ◽  
John W. R. Zinck

Whether old-growth (OG) forests have higher genetic diversity and effective population size, consequently higher conservation value and climate adaptive potential than second-growth (SG) forests, remain an unresolved issue. We have tested the hypothesis that old-growth forest tree populations have higher genetic diversity, effective population size (NE), climate adaptive potential and conservation value and lower genetic differentiation than second-growth forest tree populations, employing a keystone and long-lived conifer, eastern white pine (EWP; Pinus strobus). Genetic diversity and population structure of old-growth and second-growth populations of eastern white pine (EWP) were examined using microsatellites of the nuclear and chloroplast genomes and single nucleotide polymorphisms (SNPs) in candidate nuclear genes putatively involved in adaptive responses to climate and underlying multilocus genetic architecture of local adaptation to climate in EWP. Old-growth and second-growth EWP populations had statistically similar genetic diversity, inbreeding coefficient and inter-population genetic differentiation based on nuclear microsatellites (nSSRs) and SNPs. However, old-growth populations had significantly higher chloroplast microsatellites (cpSSRs) haploid diversity than second-growth populations. Old-growth EWP populations had significantly higher coalescence-based historical long-term NE than second-growth EWP populations, but the linkage disequilibrium (LD)-based contemporary NE estimates were statistically similar between the old-growth and second-growth EWP populations. Analyses of population genetic structure and inter-population genetic relationships revealed some genetic constitution differences between the old-growth and second-growth EWP populations. Overall, our results suggest that old-growth and second-growth EWP populations have similar genetic resource conservation value. Because old-growth and second-growth EWP populations have similar levels of genetic diversity in genes putatively involved in adaptive responses to climate, old-growth, and second-growth populations may have similar adaptive potential under climate change. Our results could potentially be generalized across most of the boreal and temperate conifer forest trees. Our study contributes to address a long-standing issue, advances research field and knowledge about conservation and ecological and climate adaptation of forest trees.


2019 ◽  
Author(s):  
C.J. Battey ◽  
Peter L. Ralph ◽  
Andrew D. Kern

ABSTRACTReal geography is continuous, but standard models in population genetics are based on discrete, well-mixed populations. As a result many methods of analyzing genetic data assume that samples are a random draw from a well-mixed population, but are applied to clustered samples from populations that are structured clinally over space. Here we use simulations of populations living in continuous geography to study the impacts of dispersal and sampling strategy on population genetic summary statistics, demographic inference, and genome-wide association studies. We find that most common summary statistics have distributions that differ substantially from that seen in well-mixed populations, especially when Wright’s neighborhood size is less than 100 and sampling is spatially clustered. Stepping-stone models reproduce some of these effects, but discretizing the landscape introduces artifacts which in some cases are exacerbated at higher resolutions. The combination of low dispersal and clustered sampling causes demographic inference from the site frequency spectrum to infer more turbulent demographic histories, but averaged results across multiple simulations were surprisingly robust to isolation by distance. We also show that the combination of spatially autocorrelated environments and limited dispersal causes genome-wide association studies to identify spurious signals of genetic association with purely environmentally determined phenotypes, and that this bias is only partially corrected by regressing out principal components of ancestry. Last, we discuss the relevance of our simulation results for inference from genetic variation in real organisms.


2019 ◽  
Author(s):  
Xi Wang ◽  
Carolina Bernhardsson ◽  
Pär K. Ingvarsson

AbstractUnder the neutral theory, species with larger effective population sizes are expected to harbour higher genetic diversity. However, across a wide variety of organisms, the range of genetic diversity is orders of magnitude more narrow than the range of effective population size. This observation has become known as Lewontin’s paradox and although aspects of this phenomenon have been extensively studied, the underlying causes for the paradox remain unclear. Norway spruce (Picea abies) is a widely distributed conifer species across the northern hemisphere and it consequently plays a major role in European forestry. Here, we use whole-genome re-sequencing data from 35 individuals to perform population genomic analyses in P. abies in an effort to understand what drives genome-wide patterns of variation in this species. Despite having a very wide geographic distribution and an enormous current population size, our analyses find that genetic diversity of P.abies is low across a number of populations (p=0.005-0.006). To assess the reasons for the low levels of genetic diversity, we infer the demographic history of the species and find that it is characterised by several re-occurring bottlenecks with concomitant decreases in effective population size can, at least partly, provide an explanation for low polymorphism we observe in P. abies. Further analyses suggest that recurrent natural selection, both purifying and positive selection, can also contribute to the loss of genetic diversity in Norway spruce by reducing genetic diversity at linked sites. Finally, the overall low mutation rates seen in conifers can also help explain the low genetic diversity maintained in Norway spruce.


2021 ◽  
Author(s):  
Winfield Chen ◽  
Lloyd T. Elliott

AbstractWe improve the efficiency of population genetic file formats and GWAS computation by leveraging the distribution of sample ordering in population-level genetic data. We identify conditional exchangeability of these data, recommending finite state entropy algorithms as an arithmetic code naturally suited to population genetic data. We show between 10% and 40% speed and size improvements over dictionary compression methods for population genetic data such as Zstd and Zlib in computation and and decompression tasks. We provide a prototype for genome-wide association study with finite state entropy compression demonstrating significant space saving and speed comparable to the state-of-the-art.


Author(s):  
Marina Reyne ◽  
Kara Dicks ◽  
Claire McFarlane ◽  
Aurélie Aubry ◽  
Mark Emmerson ◽  
...  

AbstractMolecular methods can play a crucial role in species management and conservation. Despite the usefulness of genetic approaches, they are often not explicitly included as part of species recovery plans and conservation practises. The Natterjack toad (Epidalea calamita) is regionally Red-Listed as Endangered in Ireland. The species is declining and is now present at just seven sites within a highly restricted range. This study used 13 highly polymorphic microsatellite markers to analyse the population genetic diversity and structure. Genetic diversity was high with expected heterozygosity between 0.55 and 0.61 and allelic richness between 4.77 and 5.92. Effective population sizes were small (Ne < 100 individuals), but not abnormal for pond breeding amphibians. However, there was no evidence of historical or contemporary genetic bottlenecks or high levels of inbreeding. We identified a positive relationship between Ne and breeding pond surface area, suggesting that environmental factors are a key determinant of population size. Significant genetic structuring was detected throughout the species’ range, and we identified four genetic entities that should be considered in the species’ conservation strategies. Management should focus on preventing further population declines and future loss of genetic diversity overall and within genetic entities while maintaining adequate local effective population size through site-specific protection, human-mediated translocations and head-start programs. The apparent high levels of genetic variation give hope for the conservation of Ireland’s rarest amphibian if appropriately protected and managed.


2018 ◽  
Author(s):  
Ayumi Tezuka ◽  
Masaki Takasu ◽  
Teruaki Tozaki ◽  
Atsushi J. Nagano

AbstractUnplanned crossbreeding between a native livestock and a specific productive breed was one of the main reasons that caused the loss of valuable genetic resources in native livestock. To avoid further loss and damage of genetic resources in the native livestock, introgressed individuals should be distinguished to eliminate them by preventing any further employment in future mating plans. In general, the genetic diversity of native livestock had already decreased and mass elimination of introgressed individuals from the population endangers their existence. To solve this problem, high-resolution markers are required to discriminate between introgressed variation and native variation. Here, we applied ddRAD-Seq markers for native Japanese horse “Taishu” that has undergone recent genetic introgression. Genome-wide ddRAD-Seq markers can distinguish five breeds of native Japanese horses and Anglo-Arabian introgressed breeds. We found the signatures of genetic introgression of Anglo-Arabian at only two chromosomes; however, the signatures were separated in their genome suggesting that it might not be the cause of recent introgression. The genetic diversity of Taishu was less than other Japanese breeds and the decreasing genetic diversity is an urgent issue compared to genetic introgression. Although few signatures of recent introgression were detected, a lot of shared SNPs (10% of all SNPs in Taishu) were detected between Taishu and Anglo-Arabian. To avoid misestimation of the presence and degree of introgression in native livestock, information regarding shared SNPs and population genetic approaches need to be assessed by using the large number of genome-wide markers such as ddRAD-Seq.


Sign in / Sign up

Export Citation Format

Share Document