scholarly journals Determinants of tree cover in tropical floodplains

2019 ◽  
Vol 286 (1914) ◽  
pp. 20191755 ◽  
Author(s):  
Joshua H. Daskin ◽  
Filipe Aires ◽  
A. Carla Staver

Tree cover differentiates forests from savannas and grasslands. In tropical floodplains, factors differentiating these systems are poorly known, even though floodplains cover 10% of the tropical landmass. Seasonal inundation potentially presents trees with both challenges (soil anoxia) and benefits (moisture and nutrient deposition), the relative importance of which may depend on ecological context, e.g. if floods alleviate water stress more in more arid ecosystems. Here, we use remotely sensed data across 13 large tropical and sub-tropical floodplain ecosystems on five continents to show that climatic water balance (i.e. precipitation—potential evapotranspiration) strongly increases floodplain tree cover in interaction with flooding, fire and topography. As predicted, flooding increases tree cover in more arid floodplains, but decreases tree cover in climatically wetter ones. As in uplands, frequent fire reduced tree cover, particularly in wet regions, but—in contrast with uplands—lower elevation and sandier soils decreased tree cover. Our results suggest that predicting the impacts of changing climate, land use and hydrology on floodplain ecosystems depends on considering climate-disturbance interactions. While outright wetland conversion proceeds globally, additional anthropogenic activities, including alteration of fire frequencies and dam construction, will also shift floodplain tree cover, especially in wet climates.

2010 ◽  
Vol 14 (11) ◽  
pp. 2193-2205 ◽  
Author(s):  
J. L. Peña-Arancibia ◽  
A. I. J. M. van Dijk ◽  
M. Mulligan ◽  
L. A. Bruijnzeel

Abstract. The understanding of low flows in rivers is paramount more than ever as demand for water increases on a global scale. At the same time, limited streamflow data to investigate this phenomenon, particularly in the tropics, makes the provision of accurate estimations in ungauged areas an ongoing research need. This paper analysed the potential of climatic and terrain attributes of 167 tropical and sub-tropical unregulated catchments to predict baseflow recession rates. Daily streamflow data (m3 s–1) from the Global River Discharge Center (GRDC) and a linear reservoir model were used to obtain baseflow recession coefficients (kbf) for these catchments. Climatic attributes included annual and seasonal indicators of rainfall and potential evapotranspiration. Terrain attributes included indicators of catchment shape, morphology, land cover, soils and geology. Stepwise regression was used to identify the best predictors for baseflow recession coefficients. Mean annual rainfall (MAR) and aridity index (AI) were found to explain 49% of the spatial variation of kbf. The rest of climatic indices and the terrain indices average catchment slope (SLO) and tree cover were also good predictors, but co-correlated with MAR. Catchment elongation (CE), a measure of catchment shape, was also found to be statistically significant, although weakly correlated. An analysis of clusters of catchments of smaller size, showed that in these areas, presumably with some similarity of soils and geology due to proximity, residuals of the regression could be explained by SLO and CE. The approach used provides a potential alternative for kbf parameterisation in ungauged catchments.


2021 ◽  
Author(s):  
Irene Marzolff ◽  
Mario Kirchhoff ◽  
Robin Stephan ◽  
Manuel Seeger ◽  
Ali Aït Hssaïne ◽  
...  

<p>In semi-arid to arid South-west Morocco, the once ubiquitous endemic argan tree (<em>Argania spinosa</em>) forms the basis of a traditional silvo-pastoral agroforestry system with complex usage rights involving pasturing and tree-browsing by goats, sheep and camels, smallholder agriculture and oil production. Widespread clearing of the open-canopy argan forests has been undertaken in the 12<sup>th</sup>–17<sup>th</sup> century for sugarcane production, and again in the 20<sup>th</sup> century for fuelwood extraction and conversion to commercial agriculture. The remaining argan woodlands have continued to decline due to firewood extraction, charcoal-making, overgrazing and overbrowsing. Soil and vegetation are increasingly being degraded; natural rejuvenation is hindered, and soil-erosion rates rise due to reduced infiltration and increased runoff. Numerous studies indicate that tree density and canopy cover have been generally decreasing for the last 200 years. However, there is little quantitative and spatially explicit information about these forest-cover dynamics.</p><p>In our study, the tree-cover change between 1967 and 2019 was analysed for 30 test sites of 1 ha each in argan woodlands of different degradation stages in the provinces of Taroudant, Agadir Ida-Outanane and Chtouka-Aït Baha. We used historical black-and-white satellite photography from the American reconnaissance programme CORONA, recent high-resolution multispectral imagery from the commercial WorldView satellites and ultrahigh resolution small-format aerial photography taken with an unmanned aerial system (UAS) to map the presence, absence and comparative crown-size class of 2610 trees in 1967 and 2019. We supplemented the remotely-sensed data with field observations on tree structure and architecture.</p><p>Results show that plant densities reach up to 300 argan trees and shrubs per hectare, and the mean tree density has increased from 58 trees/ha in 1967 to 86 trees/ha in 2019. While 7% of the 1967 trees have vanished today, more than one third of today’s trees could not be observed in 1967. This positive change has a high uncertainty, however, as most of the increase concerns small trees (< 3 m diameter) which might have been missed on the lower-resolution CORONA images.</p><p>When combined with our field data on tree architecture, tree count – albeit a parameter easily attained by remote sensing – is revealed as too simple an indicator for argan-forest dynamics, and the first impression of a positive development needs to be revised: The new small trees as well as trees with decreased crown sizes clearly show much stronger degradation characteristics than others, indicating increased pressures on the argan ecosystem during recent decades. Structural traits of the smaller trees also suggest that the apparent increase of tree count is not a result of natural rejuvenation, but mostly of stump re-sprouting, often into multi-stemmed trees, after felling of a tree. The density of the argan forest in the 1960s, prior to the general availability of cooking gas in the region and before the stronger enforcement of the argan logging ban following the declaration of the UNESCO biosphere reserve, may have marked a historic low in our study area, making the baseline of our change analysis far removed from the potential natural state of the argan ecosystem.</p>


2020 ◽  
Vol 12 (8) ◽  
pp. 3258
Author(s):  
Yanli Lyu ◽  
Peijun Shi ◽  
Guoyi Han ◽  
Lianyou Liu ◽  
Lanlan Guo ◽  
...  

Desertification is a form of land degradation principally in semi-arid and arid areas influenced by climatic and human factors. As a country plagued by extensive sandy desertification and frequent sandstorms and dust storms, China has been trying to find ways to achieve the sustainable management of desertified lands. This paper reviewed the impact of climate change and anthropogenic activities on desertified areas, and the effort, outcome, and lessons learned from desertification control in China. Although drying and warming trends and growing population pressures exist in those areas, the expanding trend of desertified land achieved an overall reversal. In the past six decades, many efforts, including government policies, forestry, and desertification control programs, combined with eco-industrialization development, have been integrated to control the desertification in northern China. Positive human intervention including afforestation, and the rehabilitation of mobile sandy land, and water conservation have facilitated the return of arid and semi-arid ecosystems to a more balanced state. China’s practices in desertification control could provide valuable knowledge for sustainable desertified land management on a global scale.


2021 ◽  
Vol 13 (17) ◽  
pp. 3442
Author(s):  
Dou Zhang ◽  
Xiaolei Geng ◽  
Wanxu Chen ◽  
Lei Fang ◽  
Rui Yao ◽  
...  

Global greening over the past 30 years since 1980s has been confirmed by numerous studies. However, a single-dimensional indicator and non-spatial modelling approaches might exacerbate uncertainties in our understanding of global change. Thus, comprehensive monitoring for vegetation’s various properties and spatially explicit models are required. In this study, we used the newest enhanced vegetation index (EVI) products of Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 to detect the inconsistency trend of annual peak and average global vegetation growth using the Mann–Kendall test method. We explored the climatic factors that affect vegetation growth change from 2001 to 2018 using the spatial lag model (SLM), spatial error model (SEM) and geographically weighted regression model (GWR). The results showed that EVImax and EVImean in global vegetated areas consistently showed linear increasing trends during 2001–2018, with the global averaged trend of 0.0022 yr−1 (p < 0.05) and 0.0030 yr−1 (p < 0.05). Greening mainly occurred in the croplands and forests of China, India, North America and Europe, while browning was almost in the grasslands of Brazil and Africa (18.16% vs. 3.08% and 40.73% vs. 2.45%). In addition, 32.47% of the global vegetated area experienced inconsistent trends in EVImax and EVImean. Overall, precipitation and mean temperature had positive impacts on vegetation variation, while potential evapotranspiration and vapour pressure had negative impacts. The GWR revealed that the responses of EVI to climate change were inconsistent in an arid or humid area, in cropland or grassland. Climate change could affect vegetation characteristics by changing plant phenology, consequently rendering the inconsistency between peak and mean greening. In addition, anthropogenic activities, including land cover change and land use management, also could lead to the differences between annual peak and mean vegetation variations.


2020 ◽  
Author(s):  
Timothée Jautzy ◽  
Pierre-Alexis Herrault ◽  
Valentin Chardon ◽  
Laurent Schmitt ◽  
Gilles Rixhon

&lt;p&gt;A majority of European rivers have been extensively affected by diverse anthropogenic activities, including e.g. channelization, regulation and sediment mining. Against this background, the planimetric analysis based on remotely-sensed data is frequently used to evaluate historical planform changes, eventually leading to quantification of migration rates. However, geometric spatially-variable (SV) error inherently associated with these data can result in poor or even misleading interpretation of measured changes, especially on mid-sized rivers. We therefore address the following issue: What is the impact of spatially-variable error on the quantification of surfacic river planform changes?&lt;/p&gt;&lt;p&gt;Our test river corresponds to a 20 m wide meandering sub-tributary of the Upper Rhine, the Lower Bruche. Within four, geomorphologically-diverse sub-reaches, the active channel is digitised using diachronic orthophotos (1950; 1964) and the SV-error affecting the data is interpolated with an Inverse Distance Weighting technique based on an independent set of ground control points. As a second step, the main novelty of our approach consists in running Monte-Carlo (MC) simulations to randomly translate active channels according to the interpolated SV-error. This eventually allows to display the relative margin of error (RME) associated with measured eroded and/or deposited surfaces for each sub-reach through MC simulations, illustrating the confidence level in the respective measurements of our river planform changes.&lt;/p&gt;&lt;p&gt;Our results suggest that (i) SV-error strongly affects the significance of measured changes and (ii) the confidence level might be dependent not only on magnitude of changes but also on their shapes. Taking SV-error into account is strongly recommended, regardless of the remotely-sensed data used. This is particularly true for mid-sized rivers and/or low amplitude river planform changes, especially in the aim of their sustainable management and/or restoration. Finally, our methodology is transferrable to different fluvial styles.&lt;/p&gt;


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 539 ◽  
Author(s):  
Christopher M. Wade ◽  
Kemen G. Austin ◽  
James Cajka ◽  
Daniel Lapidus ◽  
Kibri H. Everett ◽  
...  

The protection of forests is crucial to providing important ecosystem services, such as supplying clean air and water, safeguarding critical habitats for biodiversity, and reducing global greenhouse gas emissions. Despite this importance, global forest loss has steadily increased in recent decades. Protected Areas (PAs) currently account for almost 15% of Earth’s terrestrial surface and protect 5% of global tree cover and were developed as a principal approach to limit the impact of anthropogenic activities on natural, intact ecosystems and habitats. We assess global trends in forest loss inside and outside of PAs, and land cover following this forest loss, using a global map of tree cover loss and global maps of land cover. While forests in PAs experience loss at lower rates than non-protected forests, we find that the temporal trend of forest loss in PAs is markedly similar to that of all forest loss globally. We find that forest loss in PAs is most commonly—and increasingly—followed by shrubland, a broad category that could represent re-growing forest, agricultural fallows, or pasture lands in some regional contexts. Anthropogenic forest loss for agriculture is common in some regions, particularly in the global tropics, while wildfires, pests, and storm blowdown are a significant and consistent cause of forest loss in more northern latitudes, such as the United States, Canada, and Russia. Our study describes a process for screening tree cover loss and agriculture expansion taking place within PAs, and identification of priority targets for further site-specific assessments of threats to PAs. We illustrate an approach for more detailed assessment of forest loss in four case study PAs in Brazil, Indonesia, Democratic Republic of Congo, and the United States.


Geosciences ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 312
Author(s):  
Mesmin Tchindjang

Situated at the northern flank of the Oku Massif, Lake Nyos crater epitomizes landscape features originating from volcanic explosions during the Quaternary. The Cameroon Volcanic Line (CVL), to which it belongs, constitutes the most active volcanic region in Cameroon. In 1986, an outgas explosion occurred from beneath the lake and killed 1746 people in several neighbouring villages. The event influenced a radial area of 25 to 40 km wide, particularly in eastern and western direction. This was mainly due to: (1) the rugged nature of the landscape (fault fields), which enabled the heavier gas to follow valleys framed by faults corridors without affecting elevated areas; and (2) the seasonal dominating western wind direction, which channeled the gas along tectonic corridors and valleys. This paper assesses the geological risk and vulnerability in the Lake Nyos before and after several proposal to mitigate future outgas events. Remotely sensed data, together with GIS tools (topographic maps, aerial photographs), helped to determine and assess lineaments and associated risks. A critical grid combining severity and frequency analysis was used to assess the vulnerability of the local population. There is evidence that along the main fault directions (SW–NE), anthropogenic activities are most intensive and they may play an aggravating role for disasters. This requires the local population’s consciousness-raising. The results also show that population around Lake Nyos still remains vulnerable to volcanic hazards and floods. However, the area has been safe since the last degassing and jet grouting through multiple procedures and actions proposed in the National Contingency Plan, and equally by the relief organization plan (DROP or ORSEC plan) for the Menchum Division. Another issue is that the local population is concerned with the idea of returning to the affected areas in order to stay close to their ancestors or the deceased. Therefore, even after jet grouting and degassing, the problem of risk minimization for local residents remains.


Sign in / Sign up

Export Citation Format

Share Document