scholarly journals Pollination by hoverflies in the Anthropocene

2020 ◽  
Vol 287 (1927) ◽  
pp. 20200508 ◽  
Author(s):  
Toby Doyle ◽  
Will L. S. Hawkes ◽  
Richard Massy ◽  
Gary D. Powney ◽  
Myles H. M. Menz ◽  
...  

Pollinator declines, changes in land use and climate-induced shifts in phenology have the potential to seriously affect ecosystem function and food security by disrupting pollination services provided by insects. Much of the current research focuses on bees, or groups other insects together as ‘non-bee pollinators’, obscuring the relative contribution of this diverse group of organisms. Prominent among the ‘non-bee pollinators’ are the hoverflies, known to visit at least 72% of global food crops, which we estimate to be worth around US$300 billion per year, together with over 70% of animal pollinated wildflowers. In addition, hoverflies provide ecosystem functions not seen in bees, such as crop protection from pests, recycling of organic matter and long-distance pollen transfer. Migratory species, in particular, can be hugely abundant and unlike many insect pollinators, do not yet appear to be in serious decline. In this review, we contrast the roles of hoverflies and bees as pollinators, discuss the need for research and monitoring of different pollinator responses to anthropogenic change and examine emerging research into large populations of migratory hoverflies, the threats they face and how they might be used to improve sustainable agriculture.

2018 ◽  
Vol 285 (1873) ◽  
pp. 20172329 ◽  
Author(s):  
Christine Howard ◽  
Philip A. Stephens ◽  
Joseph A. Tobias ◽  
Catherine Sheard ◽  
Stuart H. M. Butchart ◽  
...  

Climate change is predicted to increase migration distances for many migratory species, but the physiological and temporal implications of longer migratory journeys have not been explored. Here, we combine information about species' flight range potential and migratory refuelling requirements to simulate the number of stopovers required and the duration of current migratory journeys for 77 bird species breeding in Europe. Using tracking data, we show that our estimates accord with recorded journey times and stopovers for most species. We then combine projections of altered migratory distances under climate change with models of avian flight to predict future migratory journeys. We find that 37% of migratory journeys undertaken by long-distance migrants will necessitate an additional stopover in future. These greater distances and the increased number of stops will substantially increase overall journey durations of many long-distance migratory species, a factor not currently considered in climate impact studies.


2018 ◽  
Vol 31 ◽  
pp. 255-264 ◽  
Author(s):  
Darius J. Semmens ◽  
Jay E. Diffendorfer ◽  
Kenneth J. Bagstad ◽  
Ruscena Wiederholt ◽  
Karen Oberhauser ◽  
...  

2020 ◽  
Vol 287 (1930) ◽  
pp. 20200649 ◽  
Author(s):  
Ainhoa Magrach ◽  
Carlos Lara ◽  
Ubaldo Márquez Luna ◽  
Sergio Díaz-Infante ◽  
Ingrid Parker

Predicting how communities re-arrange in response to changes in species composition remains a key challenge in ecology. Migratory species, which enter and leave communities across latitudinal gradients, offer us a unique opportunity to evaluate community- and species-level responses to a shift in community composition. We focused on a migratory hummingbird and the communities that host it along a latitudinal and species diversity gradient. Our results show higher niche overlap in more diverse communities, allowing resident species to compensate for the loss of the migrant in providing pollination services. Contrastingly, in less diverse communities, the migrant behaves as a specialist, monopolizing abundant resources. In its absence, its role is not fully covered by resident species, resulting in a decrease in the fruit set of the migrant's preferred plant species. These results help us understand the potential impacts of biodiversity loss and have important implications for community persistence given expected changes in the migratory behaviours of some species.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 76 ◽  
Author(s):  
Sari Mäntynen ◽  
Lotta-Riina Sundberg ◽  
Hanna Oksanen ◽  
Minna Poranen

Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. Membrane-containing phages have provided a framework for understanding virus evolution. The original observation on membrane-containing bacteriophage PRD1 and human pathogenic adenovirus has been fundamental in delineating the concept of “viral lineages”, postulating that the fold of the major capsid protein can be used as an evolutionary fingerprint to trace long-distance evolutionary relationships that are unrecognizable from the primary sequences. This has brought the early evolutionary paths of certain eukaryotic, bacterial, and archaeal viruses together, and potentially enables the reorganization of the nearly immeasurable virus population (~1 × 1031) on Earth into a reasonably low number of groups representing different architectural principles. In addition, the research on membrane-containing phages can support the development of novel tools and strategies for human therapy and crop protection.


2011 ◽  
Vol 80 (4) ◽  
pp. 279-284 ◽  
Author(s):  
Diana C. Outlaw ◽  
V. Nijman

Long-distance migration imposes physiological and morphological selection pressures on birds. The genus Ficedula, a lineage of Old World flycatchers, consists of long- and short-distance migratory species, as well as sedentary species. Members of each of these groups are not reciprocally monophyletic, yet each of the behavioral groups is morphologically distinguishable even when accounting for phylogeny. Long-distance migratory species have more pointed wings than either short-distance migratory or sedentary species, and migratory behaviors and wing pointed-ness are phylogenetically correlated. This suggests that migratory Ficedula species have converged on a migratory phenotype, and that migration may be a selective agent that has shaped the independently-derived migratory Ficedula species in similar ways.


2019 ◽  
Vol 39 (2) ◽  
pp. 173-191 ◽  
Author(s):  
Yann Salmon ◽  
Lars Dietrich ◽  
Sanna Sevanto ◽  
Teemu Hölttä ◽  
Masako Dannoura ◽  
...  

Abstract On-going climate change is increasing the risk of drought stress across large areas worldwide. Such drought events decrease ecosystem productivity and have been increasingly linked to tree mortality. Understanding how trees respond to water shortage is key to predicting the future of ecosystem functions. Phloem is at the core of the tree functions, moving resources such as non-structural carbohydrates, nutrients, and defence and information molecules across the whole plant. Phloem function and ability to transport resources is tightly controlled by the balance of carbon and water fluxes within the tree. As such, drought is expected to impact phloem function by decreasing the amount of available water and new photoassimilates. Yet, the effect of drought on the phloem has received surprisingly little attention in the last decades. Here we review existing knowledge on drought impacts on phloem transport from loading and unloading processes at cellular level to possible effects on long-distance transport and consequences to ecosystems via ecophysiological feedbacks. We also point to new research frontiers that need to be explored to improve our understanding of phloem function under drought. In particular, we show how phloem transport is affected differently by increasing drought intensity, from no response to a slowdown, and explore how severe drought might actually disrupt the phloem transport enough to threaten tree survival. Because transport of resources affects other organisms interacting with the tree, we also review the ecological consequences of phloem response to drought and especially predatory, mutualistic and competitive relations. Finally, as phloem is the main path for carbon from sources to sink, we show how drought can affect biogeochemical cycles through changes in phloem transport. Overall, existing knowledge is consistent with the hypotheses that phloem response to drought matters for understanding tree and ecosystem function. However, future research on a large range of species and ecosystems is urgently needed to gain a comprehensive understanding of the question.


2013 ◽  
Vol 73 (3) ◽  
pp. 559-571 ◽  
Author(s):  
. Schork ◽  
Hermes-Silva. G. ◽  
. S ◽  
E. Zaniboni-Filho

This study characterized fishing activity in the reservoir of the Hydroelectric Power Plant of Itá in Brazil. The reservoir is located in the Upper Uruguay River, which forms the border between the states of Santa Catarina and Rio Grande do Sul. To analyze fishing activity and the composition of ichthyofauna in the reservoir after damming, questionnaires were administered to fishermen in the region between 2004 and 2009. The results showed that fishing in the Itá reservoir can be classified as a subsistence activity performed on small vessels and usually involving the use of drift nets and handlines. Between 2004 and 2009, 292,780.10 kg worth of fish were captured, with an average annual productivity of 3.46 kg ha−1 yr−1. We recorded the highest values of catch per unit effort in 2006, with an annual average of 9.69 kg fisherman−1 day−1. A total of 27 morphospecies were captured during the sample period; carp, traíra, mandi and jundiá together accounted for almost 60% of the catch. This finding indicates that fishing is centered on the capture of sedentary and short-distance migratory species. Despite their lower abundance, long-distance migratory species continue to be captured. The case of the piracanjuba, a long-distance migratory species reintroduced to the region in 2004 and still present in the catches, is particularly noteworthy. Regarding the fishermen's socioeconomic profile, all were men, most of who have engaged in the activity for more than eleven years, have a low educational level, fish with the aid of family members and list agriculture as their main economic activity.


2015 ◽  
Vol 282 (1805) ◽  
pp. 20143033 ◽  
Author(s):  
Josianne Lachapelle ◽  
Joshua Reid ◽  
Nick Colegrave

The degree to which evolutionary trajectories and outcomes are repeatable across independent populations depends on the relative contribution of selection, chance and history. Population size has been shown theoretically and empirically to affect the amount of variation that arises among independent populations adapting to the same environment. Here, we measure the contribution of selection, chance and history in different-sized experimental populations of the unicellular alga Chlamydomonas reinhardtii adapting to a high salt environment to determine which component of evolution is affected by population size. We find that adaptation to salt is repeatable at the fitness level in medium ( N e = 5 × 10 4 ) and large ( N e = 4 × 10 5 ) populations because of the large contribution of selection. Adaptation is not repeatable in small ( N e = 5 × 10 3 ) populations because of large constraints from history. The threshold between stochastic and deterministic evolution in this case is therefore between effective population sizes of 10 3 and 10 4 . Our results indicate that diversity across populations is more likely to be maintained if they are small. Experimental outcomes in large populations are likely to be robust and can inform our predictions about outcomes in similar situations.


The Ring ◽  
2017 ◽  
Vol 39 (1) ◽  
pp. 23-82
Author(s):  
József Gyurácz ◽  
Péter Bánhidi ◽  
József Góczán ◽  
Péter Illés ◽  
Sándor Kalmár ◽  
...  

Abstract The fieldwork, i.e. catching and ringing birds using mist-nets, was conducted at Tömörd Bird Ringing Station in western Hungary during the post-breeding migration seasons in 1998-2016. Altogether, 106,480 individuals of 133 species were ringed at the station. The aim of this paper was to publish basic information on passerine migration at this site. Migration phenology was described through annual and daily capture frequencies. Furthermore, we provide the median date of the passage, the date of the earliest or latest capture, the peak migration season within the study period, and the countries where the birds monitored at the site were ringed or recovered abroad. To compare the catching dynamics for the fifty species with total captures greater than 200, a reference period was defined: from 5 Aug. to 5 Nov. 2001-2016. Some non-passerines that are more easily caught with mist-nets or that are caught occasionally were listed as well. The two superdominant species, the European Robin and the Eurasian Blackcap, with 14,377 and 13,926 total captures, made up 27% of all ringed individuals. Among the fifty species analysed, there were ten species with a decreasing trend, five species with an increasing trend and thirty-five species with a stable (or uncertain) trend in their numbers from 2001 to 2016. The temporal pattern of migration of long-distance migrants was different from that of the medium- and short-distance migratory species.


2021 ◽  
Vol 664 ◽  
pp. 103-116
Author(s):  
L Martínez-García ◽  
B Hansson ◽  
J Hollander

Seagrass meadows are one of the most important habitats in coastal regions since they constitute a multifunctional ecosystem providing high productivity and biodiversity. They play a key role in carbon sequestration capacity, mitigation against coastal erosion and as nursery grounds for many marine fish and invertebrates. However, despite these ecosystem functions and services, seagrass meadows are a threatened ecosystem worldwide. In the Baltic Sea, seagrass meadows have declined rapidly, mainly because of eutrophication, anthropogenic activities and climate change. This decline has the potential to erode the genetic variation and genetic structure of the species. In this study, we assessed how genetic variation and genetic differentiation vary among Zostera marina meadows and with a number of environmental characteristics in the county of Scania in southern Sweden. A total of 205 individuals sampled at 12 locations were analysed with 10 polymorphic microsatellite loci. Results showed that in spite of anthropogenic impacts and climate change pressures, locations of Z. marina possessed high genetic variation and weak genetic differentiation, with 3 major genetic clusters. Long-distance dispersal and/or stepping-stone dispersal was found among locations, with higher migration rates within the west coast. Organic matter, salinity and maximum depth appeared to be factors most strongly associated with the genetic structure and morphological variation of Z. marina. These findings contribute significantly in the identification of potential donor sites and the viability of impacted areas to recover from natural recruitment, for the development of effective transplantation measures of Z. marina in the southern Baltic Sea and temperate regions elsewhere.


Sign in / Sign up

Export Citation Format

Share Document