Collision tectonics of the Ladakh-Zanskar Himalaya

The collision of the Indian Plate with the Karakoram-Lhasa Blocks and the closing of Neo-Tethys along the Indus Suture Zone (ISZ) is well constrained by sedimentologic, structural and palaeomagnetic data at ca. 50 Ma. Pre-collision high P— low T blueschist facies metamorphism in the ISZ is related to subduction of Tethyan oceanic crust northwards beneath the Jurassic-early Cretaceous Dras island arc. The Spontang ophiolite was obducted south westwards onto the Zanskar shelf before the Eocene closure (Dl). The youngest marine sediments on the Zanskar shelf and along the ISZ are Lower Eocene, after which continental molasse deposition occurred. After ocean closure, thrusting followed a SW-directed piggy-back sequence (D2). This has been modified by late-stage breakback thrusts, overturned thrusts and extensional normal faulting associated with culmination collapse and underplating. The ISZ and northern Zanskar shelf sequence are affected by late Tertiary redirected backthrusting (D3), which also affects the Indus molasse. A 50 km wide ‘pop-up’ zone with divergent thrust vergence was developed across the Zanskar Range. Balanced and restored cross sections indicate a minimum of 150 km of shortening across the Zanskar shelf and ISZ. Post-collision crustal thickening by thrust stacking resulted in widespread Barrovian metamorphism in the High Himalaya that reached a thermal climax during Oligocene-Miocene times. Garnet-biotite-muscovite + tourmaline granites were generated by intracrustal partial melting during the Miocene within the Central Crystalline Complex. Their emplacement on the hangingwall of localized ductile shear zones was associated with SW-directed thrusting along the Main Central Thrust (MCT) zone and concomitant culmination collapse normal faulting along the Zanskar Shear Zone (ZSZ) at the top of the slab. Metamorphic isograds have become inverted by post-metamorphic SW-verging recumbent folding and thrusting along the base of the High Himalayan slab. Along the top of the slab, isograds are the right way up but are structurally and thermally telescoped by normal faulting along the ZSZ. 1

1990 ◽  
Vol 127 (2) ◽  
pp. 101-116 ◽  
Author(s):  
U. Pognante ◽  
D. Castelli ◽  
P. Benna ◽  
G. Genovese ◽  
F. Oberli ◽  
...  

AbstractIn the High Himalayan belt of northwest India, crustal thickening linked to Palaeogene collision between India and Eurasia has led to the formation of two main crystalline tectonic units separated by the syn-metamorphic Miyar Thrust: the High Himalayan Crystallines sensu stricto (HHC) at the bottom, and the Kade Unit at the top. These units are structurally interposed between the underlying Lesser Himalaya and the very low-grade sediments of the Tibetan nappes. They consist of paragneisses, orthogneisses, minor metabasics and, chiefly in the HHC, leucogranites. The HHC registers: a polyphase metamorphism with two main stages designated as M1 and M2; a metamorphic zonation with high-temperature recrystallization and migmatization at middle structural levels and medium-temperature assemblages at upper and lower levels. In contrast, the Kade Unit underwent a low-temperature metamorphism. Rb–Sr and U–Th–Pb isotope data point to derivation of the orthogneisses from early Palaeozoic granitoids, while the leucogranites formed by anatexis of the HHC rocks and were probably emplaced during Miocene time.Most of the complicated metamorphic setting is related to polyphase tectonic stacking of the HHC with the ‘cooler’ Kade Unit and Lesser Himalaya during the Himalayan history. However, a few inconsistencies exist for a purely Himalayan age of some Ml assemblages of the HHC. As regards the crustal-derived leucogranites, the formation of a first generation mixed with quartzo-feldspathic leucosomes was possibly linked to melt-lubricated shear zones which favoured rapid crustal displacements; at upper levels they intruded during stage M2 and the latest movements along the syn-metamorphic Miyar Thrust, but before juxtaposition of the Tibetan nappes along the late- metamorphic Zanskar Fault.


1995 ◽  
Vol 11 ◽  
Author(s):  
M. P. Searle

Following India-Asia collision, which is estimated at ca. 54-50 Ma in the Ladakh-southern Tibet area, crustal thickening and timing of peak metamorphism may have been diachronous both along the Himalaya (pre-40 Ma north Pakistan; pre-31 Ma Zanskar; pre-20 Ma east Kashmir, west Garhwal; 11-4 Ma Nanga Parbat) and cross the strike of the High Himalaya, propagating S (in Zanskar SW) with time. Thrusting along the base of the High Himalayan slab (Main Central Thrust active 21-19 Ma) was synchronous with N-S (in Zanskar NE-SW) extension along the top of the slab (South Tibet Detachment Zone). Kyanite and sillimanite gneisses in the footwall formed at pressure of 8-10 kbars and depths of burial of 28-35 km, 30- 21 Ma ago, whereas anchimetamorphic sediments along the hanging wall have never been buried below ca. 5-6 km. Peak temperatures may have reached 750 on the prograde part of the P-T path. Thermobarometers can be used to constrain depths of burial assuming a continental geothermal gradient of 28-30 °C/km and a lithostatic gradient of around 3.5-3.7 km/kbar (or 0.285 kbars/km). Timing of peak metamorphism cannot yet be constrained accurately. However, we can infer cooling histories derived from thermochronometers using radiogenic isotopic systems, and thereby exhumation rates. This paper reviews all the reliable geochronological data and infers cooling histories for the Himalayan zone in Zanskar, Garhwal, and Nepal. Exhumation rates have been far greater in the High Himalayan Zone (1.4-2.1 mm/year) and southern Karakoram (1.2-1.6 mm/year) than along the zone of collision (Indus suture) or along the north Indian plate margin. The High Himalayan leucogranites span 26-14 Ma in the central Himalaya, and anatexis occurred at 21-19 Ma in Zanskar, approximately 30 Ma after the collision. The cooling histories show that significant crustal thickening, widespread metamorphism, erosion and exhumation (and therefore, possibly significant topographic elevation) occurred during the early Miocene along the central and eastern Himalaya, before the strengthening of the Indian monsoon at ca. 8 Ma, before the major change in climate and vegetation, and before the onset of E-W extension on the Tibetan plateau. Exhumation, therefore, was primarily controlled by active thrusts and normal faults, not by external factors such as climate change.


2019 ◽  
Vol 483 (1) ◽  
pp. 255-279 ◽  
Author(s):  
Peter J. Treloar ◽  
Richard M. Palin ◽  
Michael P. Searle

AbstractThe Pakistan part of the Himalaya has major differences in tectonic evolution compared with the main Himalayan range to the east of the Nanga Parbat syntaxis. There is no equivalent of the Tethyan Himalaya sedimentary sequence south of the Indus–Tsangpo suture zone, no equivalent of the Main Central Thrust, and no Miocene metamorphism and leucogranite emplacement. The Kohistan Arc was thrust southward onto the leading edge of continental India. All rocks exposed to the south of the arc in the footwall of the Main Mantle Thrust preserve metamorphic histories. However, these do not all record Cenozoic metamorphism. Basement rocks record Paleo-Proterozoic metamorphism with no Cenozoic heating; Neo-Proterozoic through Cambrian sediments record Ordovician ages for peak kyanite and sillimanite grade metamorphism, although Ar–Ar data indicate a Cenozoic thermal imprint which did not reset the peak metamorphic assemblages. The only rocks that clearly record Cenozoic metamorphism are Upper Paleozoic through Mesozoic cover sediments. Thermobarometric data suggest burial of these rocks along a clockwise pressure–temperature path to pressure–temperature conditions of c. 10–11 kbar and c. 700°C. Resolving this enigma is challenging but implies downward heating into the Indian plate, coupled with later development of unconformity parallel shear zones that detach Upper Paleozoic–Cenozoic cover rocks from Neoproterozoic to Paleozoic basement rocks and also detach those rocks from the Paleoproterozoic basement.


Author(s):  
M. P. Searle ◽  
J. M. Cottle ◽  
M. J. Streule ◽  
D. J. Waters

ABSTRACTIndia–Asia collision resulted in crustal thickening and shortening, metamorphism and partial melting along the 2200 km-long Himalayan range. In the core of the Greater Himalaya, widespread in situ partial melting in sillimanite+K-feldspar gneisses resulted in formation of migmatites and Ms+Bt+Grt+Tur±Crd±Sil leucogranites, mainly by muscovite dehydration melting. Melting occurred at shallow depths (4–6 kbar; 15–20 km depth) in the middle crust, but not in the lower crust. 87Sr/86Sr ratios of leucogranites are very high (0·74–0·79) and heterogeneous, indicating a 100 crustal protolith. Melts were sourced from fertile muscovite-bearing pelites and quartzo-feldspathic gneisses of the Neo-Proterozoic Haimanta–Cheka Formations. Melting was induced through a combination of thermal relaxation due to crustal thickening and from high internal heat production rates within the Proterozoic source rocks in the middle crust. Himalayan granites have highly radiogenic Pb isotopes and extremely high uranium concentrations. Little or no heat was derived either from the mantle or from shear heating along thrust faults. Mid-crustal melting triggered southward ductile extrusion (channel flow) of a mid-crustal layer bounded by a crustal-scale thrust fault and shear zone (Main Central Thrust; MCT) along the base, and a low-angle ductile shear zone and normal fault (South Tibetan Detachment; STD) along the top. Multi-system thermochronology (U–Pb, Sm–Nd, 40Ar–39Ar and fission track dating) show that partial melting spanned ̃24–15 Ma and triggered mid-crustal flow between the simultaneously active shear zones of the MCT and STD. Granite melting was restricted in both time (Early Miocene) and space (middle crust) along the entire length of the Himalaya. Melts were channelled up via hydraulic fracturing into sheeted sill complexes from the underthrust Indian plate source beneath southern Tibet, and intruded for up to 100 km parallel to the foliation in the host sillimanite gneisses. Crystallisation of the leucogranites was immediately followed by rapid exhumation, cooling and enhanced erosion during the Early–Middle Miocene.


Author(s):  
Ane Bang-Kittilsen ◽  
Terje Midtbø

AbstractGeologists struggle to communicate the uncertainty that arise when mapping and interpreting the geological subsurface. Today, open data sharing policies make new value of geological information possible for a broader user group of non-experts. It is crucial to develop standard methods for visualizing uncertainty to increase the usability of geological information. In this study, a web experiment was set up to analyze whether and how different design choices influence the sense of uncertainty. Also, questions about the intuitiveness of symbols were asked. Two-hundred ten participants from different countries completed the experiment, both experts and non-experts in geology. Traditional visualization techniques in geology, like dashed lines, dotted lines and question mark, were tested. In addition, other visualizations were tested, such as hatched area and variations of symbol size, zoom levels and reference information. The results show that design choices have an impact on the participants’ assessment of uncertainty. The experts inquire about crucial information if it is not present. The results also suggest that when visualizing uncertainty, all the elements in the representation, and specifically the line and area symbols that delineate and colour the features, must work together to make the right impression.


2020 ◽  
Author(s):  
Clément Montmartin ◽  
Michel Faure ◽  
Stéphane Scaillet ◽  
Hugues Raimbourg

<p>In the SE part of the Variscan French Massif Central, the Cévennes area belongs to the para-autochthonous unit of the southern Variscan belt. This area underwent three metamorphic events (Faure et al., 2001).  I) A green schist to low amphibolite facies one (500°C, 4.5Kb Arnaud, 1997) developed in micaschists and quartzites. These rocks were stacked as south-directed nappes during the final stage of the Variscan crustal thickening dated at ca 340 Ma by <sup>40</sup>Ar/<sup>39</sup>Ar on biotite (Caron, 1994). This early event was responsible for the flat-lying foliation, the N-S striking stretching lineation, and intrafolial foliation. II) A high temperature event (680°C, 4.5kb Rakib, 1996) dated at ca 325 Ma (<sup>40</sup>Ar/<sup>39</sup>Ar on two biotites, Najoui et al, 2000) overprinted the early one. On the basis of the mineral assemblages of this event, a NE-ward increase of the T conditions was interpreted as a remote effect of the Velay Dome (Rakib, 1996). III) Finally, the M<sup>t</sup>-Lozère and Aigoual-S<sup>t</sup>-Guiral-Liron monzogranitic plutons intruded the Cévennes para-autochthonous unit. Monazite and biotite yield U-Pb, and <sup>40</sup>Ar/<sup>39</sup>Ar ages at 315-303Ma and 306 Ma , respectively (Brichaud et al. 2008). The pluton emplacement conditions are determined at 695°C, 1.5Kb (Najoui et al, 2000).</p><p>We report Raman Spectrometry of Carbonaceous Matter (RSCM) paleotemperature data acquired on more than 100 samples throughout the entire Cévennes area. These show a regional homogeneous thermal distribution with a 535 ± 50 °C mean temperature without any geometric correlation with the nappes structure, nor the granitic intrusions. Moreover, no thermal increase towards the NE can be documented. SW of the Aigoual-S<sup>t</sup>-Guiral-Liron massif, our RSCM data document a temperature jumps between the overlying Cévennes micaschists and the underlying epimetamorphic rocks belonging the the Fold-and-Thust belt unit of the French Massif Central.</p><p>In order to constrain the age of this regional thermal event, we <sup>40</sup>Ar/<sup>39</sup>Ar dated 25 new regionally-distributed syn- and post-folial muscovites by step heating along two N-S cross sections within the Cévennes micaschists series. In areas distant from the plutons, the muscovite yields a ca 325 Ma age interpreted as the one of the HT event recorded by the RSCM measurements. However, young muscovite ages at ca 305Ma are observed around the plutons. We assume that the heat supplied by the plutons reset these muscovites at around 400°C while the organic matter cannot record the contact metamorphic peak lower than the regional one. Moreover, <sup>40</sup>Ar/<sup>39</sup>Ar in-situ analyses carried out on 5 mm-sized post folial (but deformed) biotites in the central part of the micaschist series provide ages around 320Ma. The presence of a hidden dome, underneath the Cévennes micaschists, similar to the pre-Velay migmatites exposed in the northern part of the Cévennes area (Faure et al., 2001, Be et al., 2006) is discussed.</p>


2021 ◽  
Vol 57 (1) ◽  
pp. 1
Author(s):  
Anastasios Plougarlis ◽  
Markos Tranos ◽  
Lambrini Papadopoulou

The lithologies and structural features of the exposed rocks of the Serbo-Macedonian massif in the Vertiskos and Kerdilion Mts. have been studied in detail by carrying out km-long cross-sections. Moreover, a new tectonostratigraphic architecture for the massif is proposed, based on the migmatization and anatexis that the rocks pertain, under which the specific exposed rocks have been placed into the Vertiskos and Kerdilion Units. The latter approach differs from the traditional view, which is based solely on the lithological difference between the units. In particular, in the Vertiskos Mt., mica schists, garnet-bearing two-mica gneisses, and predominantly two-mica gneisses, without a sign of anatexis and migmatization, overlie tectonically, biotite gneisses and layered amphibolite gneisses into which migmatization and anatexis takes place. The former constitute the Vertiskos Unit, whereas the latter have been grouped into the Kerdilion Unit, since they are of similar lithologies and affinities with rocks of the Kerdilion Unit. The Kerdilion Mt. is a large antiform made up of biotite gneisses alternating with marbles, which are similarly characterized by intense migmatization and anatexis. These rocks are intruded by the Oreskia granite, which is foliated and follows the general trend of the country rocks. All the rocks are folded with isoclinal to tight folds, and the contact between the two units is a mylonitic shear zone with a top-to-the-SW sense-of-shear. Also, a large volume of ultramafic rocks occurs between the Vertiskos and Kerdilion Mts., including metamorphosed rocks like metagabbros to massive amphibolites, which is assigned to the Therma-Volvi-Gomati Complex (TVGC). These rocks have been found in tectonic contact, i.e., shear zones with top-to-the-SW sense-of-shear, only with the rocks of the Kerdilion Unit. Taking into account our new tectonostratigraphic architecture, the contact between the Vertiskos and Kerdilion Units is not located along the western side of the marbles, as the latter are exposed in the Kerdilion Mt. It is traced westerly in the Vertiskos Mt. dipping with intermediate angles towards the SW, due to NW-trending, map-scale, isoclinal folding. The ultramafic rocks of the TVGC are in tectonic contact with the rocks of the Kerdilion Unit, but not the two-mica gneisses of the Vertiskos Unit, and the Arnea granite intrudes not only the Vertiskos Unit as previously considered, but the rocks of the Kerdilion Unit, as well.


Author(s):  
Lingchao He ◽  
Jian Zhang ◽  
Guochun Zhao ◽  
Changqing Yin ◽  
Jiahui Qian ◽  
...  

In worldwide orogenic belts, crustal-scale ductile shear zones are important tectonic channels along which the orogenic root (i.e., high-grade metamorphic lower-crustal rocks) commonly experienced a relatively quick exhumation or uplift process. However, their tectonic nature and geodynamic processes are poorly constrained. In the Trans−North China orogen, the crustal-scale Zhujiafang ductile shear zone represents a major tectonic boundary separating the upper and lower crusts of the orogen. Its tectonic nature, structural features, and timing provide vital information into understanding this issue. Detailed field observations showed that the Zhujiafang ductile shear zone experienced polyphase deformation. Variable macro- and microscopic kinematic indicators are extensively preserved in the highly sheared tonalite-trondhjemite-granodiorite (TTG) and supracrustal rock assemblages and indicate an obvious dextral strike-slip and dip-slip sense of shear. Electron backscattered diffraction (EBSD) was utilized to further determine the crystallographic preferred orientation (CPO) of typical rock-forming minerals, including hornblende, quartz, and feldspar. EBSD results indicate that the hornblendes are characterized by (100) <001> and (110) <001> slip systems, whereas quartz grains are dominated by prism <a> and prism <c> slip systems, suggesting an approximate shear condition of 650−700 °C. This result is consistent with traditional thermobarometry pressure-temperature calculations implemented on the same mineral assemblages. Combined with previously reported metamorphic data in the Trans−North China orogen, we suggest that the Zhujiafang supracrustal rocks were initially buried down to ∼30 km depth, where high differential stress triggered the large-scale ductile shear between the upper and lower crusts. The high-grade lower-crustal rocks were consequently exhumed upwards along the shear zone, synchronous with extensive isothermal decompression metamorphism. The timing of peak collision-related crustal thickening was further constrained by the ca. 1930 Ma metamorphic zircon ages, whereas a subsequent exhumation event was manifested by ca. 1860 Ma syntectonic granitic veins and the available Ar-Ar ages of the region. The Zhujiafang ductile shear zone thus essentially record an integrated geodynamic process of initial collision, crustal thickening, and exhumation involved in formation of the Trans−North China orogen at 1.9−1.8 Ga.


2020 ◽  
Vol 79 (9) ◽  
pp. 4905-4916
Author(s):  
Asghar Ali ◽  
Saddam Hussain ◽  
Shehzad Khan ◽  
Awal Sher Khan ◽  
Sohail Mabood ◽  
...  

Abstract The Chakdara Granitic Gneisses (CGG) of the Indian plate and Kamila Amphibolite of the Kohistan Island Arc (KIA) along the Main Mantle Thrust (MMT) in Shigo Kas, Talash Dir Lower, indicate that tectonically induced foliations and lineations strongly affected the geomechanical properties of these rocks. The earlier S1 crenulated cleavages are well preserved in the microlithon of a well-developed ENE-WSW trending S2 crenulation cleavage. The pervasive S2 foliations, D2 fold axes, and L22 lineations are induced by NNW-SSE horizontal bulk shortening. The core samples obtained parallel and perpendicular to the main ENE-WSW trending S2 and L22 have higher and lower uniaxial compressive strength (UCS) values, respectively. The UCS and uniaxial tensile strength (UTS) average values of four core samples obtained parallel and perpendicular to the main S2 are 51.8 MPa and 12.21 MPa versus 45.65 MPa and 12.45 MPa, respectively. Core samples from the weakly foliated S-2 specimen shows little variation in the UCS and UTS values. The variation in the UCS values in the core samples cut perpendicular and parallel to the main tectonic fabric has been controlled by micro-shear zones at the contact zones of crenulated and crenulation cleavages and sigmoidal mica fish. The UCS values are higher in the core samples parallel to the pervasive S2 and L22 because the parallel shear on the sigmoidal crenulated cleavages in microlithon of the S2 and S2 mica fish counterbalance the parallel external applied load. However, the UCS values decrease in the core samples that were cut perpendicular to the pervasive S2 and L22 because the perpendicular shear on the sigmoidal crenulated cleavages in microlithon of the S2 and S2 mica fish enhances the external applied load, which lead to the failure of core samples.


2020 ◽  
Vol 133 (1-2) ◽  
pp. 3-18 ◽  
Author(s):  
Suoya Fan ◽  
Michael A. Murphy

Abstract In this study, we use published geologic maps and cross-sections to construct a three-dimensional geologic model of major shear zones that make up the Himalayan orogenic wedge. The model incorporates microseismicity, megathrust coupling, and various derivatives of the topography to address several questions regarding observed crustal strain patterns and how they are expressed in the landscape. These questions include: (1) How does vertical thickening vary along strike of the orogen? (2) What is the role of oblique convergence in contributing to along-strike thickness variations and the style of deformation? (3) How do variations in the coupling along the megathrust affect the overlying structural style? (4) Do lateral ramps exist along the megathrust? (5) What structural styles underlie and are possibly responsible for the generation of high-elevation, low-relief landscapes? Our model shows that the orogenic core of the western and central Himalaya displays significant along-strike variation in its thickness, from ∼25–26 km in the western Himalaya to ∼34–42 km in the central Himalaya. The thickness of the orogenic core changes abruptly across the western bounding shear zone of the Gurla Mandhata metamorphic core complex, demonstrating a change in the style of strain there. Pressure-temperature-time results indicate that the thickness of the orogenic core at 37 Ma is 17 km. Assuming this is constant along strike from 81°E to 85°E indicates that, the western and central Nepal Himalaya have been thickened by 0.5 and 1–1.5 times, respectively. West of Gurla Mandhata the orogenic core is significantly thinner and underlies a large 11,000 km2 Neogene basin (Zhada). A broad, thick orogenic core associated with thrust duplexing is collocated with an 8500 km2 high-elevation, low-relief surface in the Mugu-Dolpa region of west Nepal. We propose that these results can be explained by oblique convergence along a megathrust with an along-strike and down-dip heterogeneous coupling pattern influenced by frontal and oblique ramps along the megathrust.


Sign in / Sign up

Export Citation Format

Share Document