A physical model for the volume and composition of melt produced by hydrous fluxing above subduction zones

Thermal models of subduction zones, restrict the melt source region to a domain at sufficiently high temperature with water present (either as a free phase or in hydrous minerals). Water, released into the mantle by slab dehydration, traverses the wedge horizontally by a combination of (i) vertical movement as a fluid phase and (ii) fixed in amphiboles carried by the induced mantle flow; only in mantle hotter than amphibole stability can melts escape upwards. We develop a one-dimensional model for the source region fluxed with water. The induced mantle flow advects heat laterally to balance the latent heat of melting, in a column where the liquidus of the melt is depressed by its water content. Melt flux, fraction, temperature and water content are calculated assuming steady state. Melt compositions are predicted from the melt fraction distribution as a function of depth, constrained by the experimental data of Green. On investigating a range of plausible models, we find that the average degrees of melting predicted vary from ca . 2 to 8% . The predicted primary magmas are mafic high magnesium basalts with water contents ranging from 1.6 to 6 wt% , and temperatures from 1160 to 1290 °C. Models with shallower depths of segregation have higher degrees of melting and lower water contents. The volumes predicted by the physical model are a strong function of the water flux assumed to enter the source region. Previous estimates of are growth would suggest either low water fluxes or that not all the melt reaches the arc crust.

2021 ◽  
Author(s):  
Nestor Cerpa ◽  
Diane Arcay ◽  
José Alberto Padrón-Navarta

<p>The water exchange between the Earth’s surface and the deep interior is a prime process for the geochemical evolution of our planet and its dynamics. The degassing of water from the mantle takes place through volcanism whereas mantle regassing occurs through the subduction of H<sub>2</sub>O chemically bound to hydrous minerals. The (im)balance between degassing and regassing controls the budget of surficial liquid water over geological timescales, i.e, the long-term global sea level. Continental freeboard constraints show that the mean-sea level has remained relatively constant in the last 540 Ma (changes less than about 100 m), thus suggesting a limited imbalance. However, thermopetrological models of water fluxes at present-day subduction zones predict that regassing exceeds degassing by about 50% which, if extrapolated to the past, would have induced a drop inconsistent with the estimations of the long-term sea-level. We have made the case that these inconsistencies arise from thermodynamic predictions for the hydrated lithospheric mantle mineralogy that are poorly constrained at a high pressure (P) and temperature (T). In our study, we thus have revised the global-water flux calculations in subduction zones using petrological constraints on post-antigorite assemblages from recent laboratory experimental data on natural peridotites under high-PT conditions [e.g. Maurice et al, 2018].</p><p>We model the thermal state of all present-day mature subduction zones along with petrological modeling using the thermodynamic code Perple_X and the most updated version of the thermodynamic database of Holland and Powell [2011]. For the modeling of peridotite, we build a hybrid phase diagram that combines thermodynamic calculations at moderate PT and experimental data at high PT (> 6 GPa- 600˚C). Our updated thermopetrological model reveals that the hydrated mantle efficiently dehydrates upon the breakdown of the hydrous aluminous-phase E before reaching 250 km in all but the coldest subduction zones. Further subducting slab dehydration is expected between 300-350 km depths, regardless of its thermal state, as a result of lawsonite breakdown in the gabbroic crust. Overall, we predict that present-day global water retention in subducting plates beyond a depth of 350 km barely exceeds the estimations of mantle degassing for average thicknesses of subducting serpentinized mantle subducting at the trenches of up to 6 km. Finally, our models quantitatively support the steady-state sea level scenario over geological times.</p><p> </p><p>Maurice, J., Bolfan-Casanova, N., Padrón-Navarta, J. A., Manthilake, G., Hammouda, T., Hénot, J. M., & Andrault, D. (2018). The stability of hydrous phases beyond antigorite breakdown for a magnetite-bearing natural serpentinite between 6.5 and 11 GPa. <em>Contributions to Mineralogy and Petrology</em>, 173(10), 86.</p><p>Holland, T. J. B., & Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. <em>Journal of Metamorphic Geology</em>, 29(3), 333-383.</p>


2020 ◽  
Author(s):  
Magali Billen ◽  
Menno Fraters

<p>When modeling subduction processes, the results are usually constrained by looking at the geological surface expressions, geochemistry and geophysical observations such as tomography and seismic anisotropy. Of these observations, seismic anisotropy is the only type of observation that can potentially be directly linked to the spatial flow pattern in the mantle. Seismic anisotropy in the mantle is due to lattice-preferred orientation (LPO) of olivine minerals. In subduction environments, which can have complex and changing flow patterns, it is not expected that the LPO necessarily aligns with the flow pattern. This is partly due to the fact that it takes time to realign the LPO and partly because the olivine fast axis alignment depends on the water content and the magnitude of stress. To overcome this problem, the LPO must be computed for realistic and end member subduction zones in order to be able to relate seismic anisotropy to mantle flow and thereby slab dynamics.</p><p>There are many ways to compute LPO. For this study we have used DREX (Kaminski et al., 2004), because the underlying method is accurate and fast enough for use in geodynamic models. To achieve a good and native integration with ASPECT (Kronbichler et al., 2012; Heister et al., 2017; Bangerth et al,. 2019), we have rewritten DREX in CPP as a plugin for ASPECT. In this presentation we will show how it was implemented and what the limitations and possibilities are. Furthermore, we will show initial results from 3D subduction models to study the link between seismic anisotropy and mantle flow.</p>


Author(s):  
MUHAMMAD ASLAM ALI ◽  
SANJIT CHANDRA BARMAN ◽  
MD. ASHRAFUL ISLAM KHAN ◽  
MD. BADIUZZAMAN KHAN ◽  
HAFSA JAHAN HIYA

Climate change and water scarcity may badly affect existing rice production system in Bangladesh. With a view to sustain rice productivity and mitigate yield scaled CH4 emission in the changing climatic conditions, a pot experiment was conducted under different soil water contents, biochar and silicate amendments with inorganic fertilization (NPKS). In this regard, 12 treatments combinations of biochar, silicate and NPKS fertilizer along with continuous standing water (CSW), soil saturation water content and field capacity (100% and 50%) moisture levels were arranged into rice planted potted soils. Gas samples were collected from rice planted pots through Closed Chamber technique and analyzed by Gas Chromatograph. This study revealed that seasonal CH4 emissions were suppressed through integrated biochar and silicate amendments with NPKS fertilizer (50–75% of the recommended doze), while increased rice yield significantly at different soil water contents. Biochar and silicate amendments with NPKS fertilizer (50% of the recommended doze) increased rice grain yield by 10.9%, 18.1%, 13.0% and 14.2%, while decreased seasonal CH4 emissions by 22.8%, 20.9%, 23.3% and 24.3% at continuous standing water level (CSW) (T9), at saturated soil water content (T10), at 100% field capacity soil water content (T11) and at 50% field capacity soil water content (T12), respectively. Soil porosity, soil redox status, SOC and free iron oxide contents were improved with biochar and silicate amendments. Furthermore, rice root oxidation activity (ROA) was found more dominant in water stress condition compared to flooded and saturated soil water contents, which ultimately reduced seasonal CH4 emissions as well as yield scaled CH4 emission. Conclusively, soil amendments with biochar and silicate fertilizer may be a rational practice to reduce the demand for inorganic fertilization and mitigate CH4 emissions during rice cultivation under water stress drought conditions.


2017 ◽  
Vol 21 (4) ◽  
pp. 189-195 ◽  
Author(s):  
Beibei Zhou ◽  
Xiaopeng Chen

The poor water retention capacity of sandy soils commonly aggregate soil erosion and ecological environment on the Chinese Loess Plateau. Due to its strong capacity for absorption and large specific surface area, the use of nanocarbon made of coconut shell as a soil amendment that could improve water retention was investigated. Soil column experiments were conducted in which a layer of nanocarbon mixed well with the soil was formed at a depth of 20 cm below the soil surface. Four different nanocarbon contents by weight (0%, 0.1%, 0.5%, and 1%) and five thicknesses of the nanocarbon- soil mixture layer ranging from 1 to 5 cm were considered. Cumulative infiltration and soil water content distributions were determined when water was added to soil columns. Soil Water Characteristic Curves (SWCC) were obtained using the centrifuge method. The principal results showed that the infiltration rate and cumulative infiltration increased with the increases of nanocarbon contents, to the thicknesses of the nano carbon-soil mixture layer. Soil water contents that below the soil-nano carbon layer decreased sharply. Both the Brooks-Corey and van Genuchten models could describe well the SWCC of the disturbed sandy soil with various nano carbon contents. Both the saturated water content (θs), residual water content (θr) and empirical parameter (α) increased with increasing nano carbon content, while the pore-size distribution parameter (n) decreased. The available soil water contents were efficiently increased with the increase in nanocarbon contents.


Solid Earth ◽  
2017 ◽  
Vol 8 (5) ◽  
pp. 1025-1045 ◽  
Author(s):  
Andreas K. Kronenberg ◽  
Hasnor F. B. Hasnan ◽  
Caleb W. Holyoke III ◽  
Richard D. Law ◽  
Zhenxian Liu ◽  
...  

Abstract. Previous measurements of water in deformed quartzites using conventional Fourier transform infrared spectroscopy (FTIR) instruments have shown that water contents of larger grains vary from one grain to another. However, the non-equilibrium variations in water content between neighboring grains and within quartz grains cannot be interrogated further without greater measurement resolution, nor can water contents be measured in finely recrystallized grains without including absorption bands due to fluid inclusions, films, and secondary minerals at grain boundaries.Synchrotron infrared (IR) radiation coupled to a FTIR spectrometer has allowed us to distinguish and measure OH bands due to fluid inclusions, hydrogen point defects, and secondary hydrous mineral inclusions through an aperture of 10 µm for specimens > 40 µm thick. Doubly polished infrared (IR) plates can be prepared with thicknesses down to 4–8 µm, but measurement of small OH bands is currently limited by strong interference fringes for samples < 25 µm thick, precluding measurements of water within individual, finely recrystallized grains. By translating specimens under the 10 µm IR beam by steps of 10 to 50 µm, using a software-controlled x − y stage, spectra have been collected over specimen areas of nearly 4.5 mm2. This technique allowed us to separate and quantify broad OH bands due to fluid inclusions in quartz and OH bands due to micas and map their distributions in quartzites from the Moine Thrust (Scotland) and Main Central Thrust (Himalayas).Mylonitic quartzites deformed under greenschist facies conditions in the footwall to the Moine Thrust (MT) exhibit a large and variable 3400 cm−1 OH absorption band due to molecular water, and maps of water content corresponding to fluid inclusions show that inclusion densities correlate with deformation and recrystallization microstructures. Quartz grains of mylonitic orthogneisses and paragneisses deformed under amphibolite conditions in the hanging wall to the Main Central Thrust (MCT) exhibit smaller broad OH bands, and spectra are dominated by sharp bands at 3595 to 3379 cm−1 due to hydrogen point defects that appear to have uniform, equilibrium concentrations in the driest samples. The broad OH band at 3400 cm−1 in these rocks is much less common. The variable water concentrations of MT quartzites and lack of detectable water in highly sheared MCT mylonites challenge our understanding of quartz rheology. However, where water absorption bands can be detected and compared with deformation microstructures, OH concentration maps provide information on the histories of deformation and recovery, evidence for the introduction and loss of fluid inclusions, and water weakening processes.


1998 ◽  
Vol 8 (4) ◽  
pp. 463-471 ◽  
Author(s):  
N. W. Pammenter ◽  
Valerie Greggains ◽  
J. I. Kioko ◽  
J. Wesley-Smith ◽  
Patricia Berjak ◽  
...  

AbstractThe drying rate of whole seeds of Ekebergia capensis (Meliaceae) was shown to influence the response to desiccation, with rapidly dried seeds surviving to lower water contents. Short-term rapid drying (to water contents higher than those leading to viability loss) actually increased the rate of germination. The form of the time course of decline of axis water content varied with drying rate; slow drying could be described by an exponential function, whereas with rapid drying initial water loss was faster than predicted by an exponential function. These observations suggest that slow drying brought about homogeneous dehydration and that the rapid drying was uneven across the tissue. This raised the possibility that the different responses to dehydration were a function of different distributions of water in the axis tissue under the two drying regimes. However, ultrastructural observations indicated that different deleterious processes may be occurring under the different drying treatments. It was tentatively concluded that a major cause of viability loss in slowly dried material was likely to be a consequence of aqueous-based processes leading to considerable membrane degradation. Uneven distribution of tissue water could not be rejected as a contributory cause of the survival of rapidly dried seeds to low bulk water contents. The differential response to dehydration at different drying rates implies that it is not possible to determine a ‘critical water content’ for viability loss by recalcitrant seeds.


2020 ◽  
Vol 68 (4) ◽  
pp. 351-358
Author(s):  
Miroslav Fér ◽  
Radka Kodešová ◽  
Barbora Kalkušová ◽  
Aleš Klement ◽  
Antonín Nikodem

AbstractThe aim of the study was to describe the impact of the soil water content and sulfamethoxazole, SUL, (antibiotic) concentration in soil on the net CO2 efflux. Soil samples were taken from topsoils of a Haplic Fluvisol and Haplic Chernozem. Soil samples were packed into the steel cylinders. The net CO2 efflux was measured from these soil columns after application of fresh water or SUL solution at different soil water contents. The experiments were carried out in dark at 20°C. The trends in the net CO2 efflux varied for different treatments. While initially high values for water treatment exponentially decreased in time, values for solution treatment increased during the first 250–650 minutes and then decreased. The total net CO2 effluxes measured for 20 hours related to the soil water content followed the second order polynomial functions. The maximal values were measured for the soil water content of 0.15 cm3 cm−3 (Haplic Fluvisol with water or solution, Haplic Chernozem with solution) and 0.11 cm3 cm−3 (Haplic Chernozem with water). The ratios between values measured for solution and water at the same soil water contents exponentially increased with increasing SUL concentration in soils. This proved the increasing stimulative influence of SUL on soil microbial activity.


Irriga ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 186-194
Author(s):  
Barbara Barreto Fernandes ◽  
Indiamara Marasca ◽  
Murilo Battistuzzi Martins ◽  
Jefferson Sandi ◽  
Kleber Pereira Lanças

REGRESSÃO QUADRÁTICA PARA TEORES DE ÁGUA EM FUNÇÃO DA COMPACTAÇÃO DO SOLO     Barbara Barreto Fernandes¹; Indiamara Marasca²; Murilo³ Battistuzzi Martins; Jefferson Sandi4 e Kleber Pereira Lanças5   1 Engenheira agrônoma, Rua Luis Carlos Da Silveira, 345, Tenis Clube, 19806-370, Assis – SP, Brasil. E-mail: [email protected] 2 Engenheira agrônoma, Fazenda Cachoeira do Montividiu – 75915-000, Montividiu – GO, Brasil. E-mail: [email protected] 3 Universidade Estadual de Mato Grosso do Sul – Unidade de Cassilândia. Rodovia MS 306 - km 6,4; 79540-000, Cassilândia, MS, Brasil. E-mail:  [email protected] 4 Universidade La Salle de Lucas do Rio Verde. Av. Universitária, 1000, Parque das Emas - 78455-000, Lucas do Rio Verde, MT, Brasil. E-mail: [email protected] 5 Departamento de Engenharia Rural na FCA/UNESP, Av. Universitária, 3780 - Altos do Paraíso, 18610-034, Botucatu, SP, Brasil. E-mail: [email protected]     1 RESUMO   O trabalho teve por objetivo avaliar a influência do teor de água na avaliação de resistência mecânica a penetração do solo, medida através do índice de cone. O experimento foi realizado na UNESP/FCA, Botucatu-SP, sendo selecionadas duas classes de solo: o Nitossolo Vermelho distroférrico e o Latossolo Vermelho. Utilizou-se o delineamento inteiramente casualizado, com os seguintes tratamentos de compactação: T0 = 0; T1 = 1; T2 = 2; T3 = 3; T4=5 e T5 = 10 passadas consecutivas de um trator agrícola. Utilizou-se um penetrômetro hidráulico-eletrônico para a amostragem da resistência mecânica do solo à penetração nas camadas de: 0,00 - 0,10; 0,10 - 0,20; 0,20 - 0,30; 0,30 - 0,40 m em quatro condições de teor de água. Com o aumento do tráfego, maior foi a compactação. Porém para o solo argiloso, a partir de uma passada do trator, os valores de resistência à penetração tiveram pouco aumento, não diferindo estatisticamente para a camada mais superficial (0-0,20 m) e para a camada de 0,20-0,40 m a partir de duas passadas. Para o solo de textura média, este comportamento foi observado a partir de uma passada para a camada mais superficial (0-0,20 m) e de cinco passadas para a camada de 0,20-0,40m.   Palavras-chave: resistência do solo, umidade, agregação.     FERNANDES, B. B.; MARASCA, I.; MARTINS, M. B.; SANDI, J.; LANÇAS, K. P. QUADRACTIC REGRESSION FOR WATER CONTENTS IN THE FUNCTION OF SOIL COMPACTION     2 ABSTRACT   The objective of this work was to evaluate the influence of water content in the evaluation of mechanical resistance to soil penetration, measured through the cone index. The experiment was conducted at UNESP/FCA, Botucatu - SP, being selected two classes of soil: a Nitossolo Vermelho distroférrico and a Latosolo Vermelho. A completely randomized design was used, with the following compaction treatments: T0 = 0; T1 = 1; T2 = 2; T3 = 3; T4 = 5 and T5 = 10 consecutive passes of an agricultural tractor. A hydraulic-electronic penetrometer was used to sample the mechanical resistance of the soil to penetrate the layers; 0.00 – 0.10; 0.10 - 0.20; 0.20 - 0.30; 0.30 - 0.40 m in four water content conditions. With the increase in traffic, greater was the compression. However, for the clayey soil, from a tractor pass, the penetration resistance values ​​had a small increase, not differing statistically for the most superficial layer (0 - 0.20m) and for the 0.20 - 0.40 m layer from two passes. For medium textured soil, this behavior was observed from one pass to the most superficial layer (0 - 0.20 m) and five passes to the 0.20 - 0.40 m layer.   Keywords: soil resistance; moisture; aggregation.      


2015 ◽  
Vol 719-720 ◽  
pp. 187-192
Author(s):  
Heru Purnomo ◽  
Rahmat N.D. Syah ◽  
Mochammad R. Syaifulloh ◽  
Srikandi W. Arini ◽  
Essy Arijoeni Basoenondo ◽  
...  

The paper discusses strength-time relation of unfired soil-lime bricks in presence of different water content of soil as one of principal materials for the brick making. Two batches of soil-lime bricks were made with a mixture of lime, soil and water with a mass proportion of 1: 5.7: 1. Water contents of the first and second batch of soil are 30% and 40.581% respectively. Both batches of brick underwent compression and three point bending test. Absorption and physical change of bricks were also evaluated. Experimental investigation reveals that for both batches of bricks, up to 90 days compressive strength decreases a little but modulus of rupture rapidly decreases with time. The study shows that unfired soil-lime bricks with lower soil water content resulted in better strength performances compared to those with higher soil water content.


Sign in / Sign up

Export Citation Format

Share Document