scholarly journals Efficient utilization of renewable feedstocks: the role of catalysis and process design

Author(s):  
Regina Palkovits ◽  
Irina Delidovich

Renewable carbon feedstocks such as biomass and CO 2 present an important element of future circular economy. Especially biomass as highly functionalized feedstock provides manifold opportunities for the transformation into attractive platform chemicals. However, this change of the resources requires a paradigm shift in refinery design. Fossil feedstocks are processed in gas phase at elevated temperature. In contrast, biorefineries are based on processes in polar solvents at moderate conditions to selectively deoxygenate the polar, often thermally instable and high-boiling molecules. Here, challenges of catalytic deoxygenation, novel strategies for separation and opportunities provided at the interface to biotechnology are discussed in form of showcases. This article is part of a discussion meeting issue ‘Providing sustainable catalytic solutions for a rapidly changing world’.

RSC Advances ◽  
2017 ◽  
Vol 7 (67) ◽  
pp. 41973-41979 ◽  
Author(s):  
Dinesh Gupta ◽  
Ejaz Ahmad ◽  
Kamal K. Pant ◽  
Basudeb Saha

Potash alum (PA) as an inexpensive, efficient and green catalyst for production of high value platform chemicals such as 5-hydroxymethylfurfural (HMF), levulinic acid and furfural from bio-renewable feedstocks, have been explored.


2016 ◽  
Vol 04 (01) ◽  
pp. 4-10

AbstractImmunosuppression permits graft survival after transplantation and consequently a longer and better life. On the other hand, it increases the risk of infection, for instance with cytomegalovirus (CMV). However, the various available immunosuppressive therapies differ in this regard. One of the first clinical trials using de novo everolimus after kidney transplantation [1] already revealed a considerably lower incidence of CMV infection in the everolimus arms than in the mycophenolate mofetil (MMF) arm. This result was repeatedly confirmed in later studies [2–4]. Everolimus is now considered a substance with antiviral properties. This article is based on the expert meeting “Posttransplant CMV infection and the role of immunosuppression”. The expert panel called for a paradigm shift: In a CMV prevention strategy the targeted selection of the immunosuppressive therapy is also a key element. For patients with elevated risk of CMV, mTOR inhibitor-based immunosuppression is advantageous as it is associated with a significantly lower incidence of CMV events.


Author(s):  
Ramnik Kaur

E-governance is a paradigm shift over the traditional approaches in Public Administration which means rendering of government services and information to the public by using electronic means. In the past decades, service quality and responsiveness of the government towards the citizens were least important but with the approach of E-Government the government activities are now well dealt. This paper withdraws experiences from various studies from different countries and projects facing similar challenges which need to be consigned for the successful implementation of e-governance projects. Developing countries like India face poverty and illiteracy as a major obstacle in any form of development which makes it difficult for its government to provide e-services to its people conveniently and fast. It also suggests few suggestions to cope up with the challenges faced while implementing e-projects in India.


2020 ◽  
Vol 25 (3) ◽  
pp. 505-525 ◽  
Author(s):  
Seeram Ramakrishna ◽  
Alfred Ngowi ◽  
Henk De Jager ◽  
Bankole O. Awuzie

Growing consumerism and population worldwide raises concerns about society’s sustainability aspirations. This has led to calls for concerted efforts to shift from the linear economy to a circular economy (CE), which are gaining momentum globally. CE approaches lead to a zero-waste scenario of economic growth and sustainable development. These approaches are based on semi-scientific and empirical concepts with technologies enabling 3Rs (reduce, reuse, recycle) and 6Rs (reuse, recycle, redesign, remanufacture, reduce, recover). Studies estimate that the transition to a CE would save the world in excess of a trillion dollars annually while creating new jobs, business opportunities and economic growth. The emerging industrial revolution will enhance the symbiotic pursuit of new technologies and CE to transform extant production systems and business models for sustainability. This article examines the trends, availability and readiness of fourth industrial revolution (4IR or industry 4.0) technologies (for example, Internet of Things [IoT], artificial intelligence [AI] and nanotechnology) to support and promote CE transitions within the higher education institutional context. Furthermore, it elucidates the role of universities as living laboratories for experimenting the utility of industry 4.0 technologies in driving the shift towards CE futures. The article concludes that universities should play a pivotal role in engendering CE transitions.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1138
Author(s):  
Rocio de la Torre ◽  
Bhakti S. Onggo ◽  
Canan G. Corlu ◽  
Maria Nogal ◽  
Angel A. Juan

The prevailing need for a more sustainable management of natural resources depends not only on the decisions made by governments and the will of the population, but also on the knowledge of the role of energy in our society and the relevance of preserving natural resources. In this sense, critical work is being done to instill key concepts—such as the circular economy and sustainable energy—in higher education institutions. In this way, it is expected that future professionals and managers will be aware of the importance of energy optimization, and will learn a series of computational methods that can support the decision-making process. In the context of higher education, this paper reviews the main trends and challenges related to the concepts of circular economy and sustainable energy. Besides, we analyze the role of simulation and serious games as a learning tool for the aforementioned concepts. Finally, the paper provides insights and discusses open research opportunities regarding the use of these computational tools to incorporate circular economy concepts in higher education degrees. Our findings show that, while efforts are being made to include these concepts in current programs, there is still much work to be done, especially from the point of view of university management. In addition, the analysis of the teaching methodologies analyzed shows that, although their implementation has been successful in favoring the active learning of students, their use (especially that of serious games) is not yet widespread.


Author(s):  
Nils Johansson

AbstractA problem for a circular economy, embedded in its policies, tools, technologies and models, is that it is driven by the interests and needs of producers, rather than customers and users. This opinion paper focuses on an alternative form of governance—agreements, which thanks to their bargaining approach brings actors from across the value chain into the policy process. The purpose of this opinion paper is to uncover and analyse the potential of such agreements for a circular economy. Circular agreements aim at increasing the circulation of materials and are an emerging form of political governance within the EU. These agreements have different names, involve different actors and govern in different ways. However, circular agreements seem to work when other types of regulations fail to establish circulation. These agreements bring actors together and offer a platform for negotiating how advantages and disadvantages can be redistributed between actors in a way that is more suitable for a circular economy. However, circular agreements are dependent on other policy instruments to work and can generate a free-rider problem with uninvolved actors. The agreements may also become too detailed and long term, which leads to problem shifting and lock-ins, respectively.


2020 ◽  
Vol 500 (3) ◽  
pp. 3414-3424
Author(s):  
Alec Paulive ◽  
Christopher N Shingledecker ◽  
Eric Herbst

ABSTRACT Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and upon dust grain ice mantles. The COMs produced on grains then become gaseous as the temperature increases sufficiently to allow their thermal desorption. The recent observation of gaseous COMs in cold sources has not been fully explained by these gas-phase and dust grain production routes. Radiolysis chemistry is a possible non-thermal method of producing COMs in cold dark clouds. This new method greatly increases the modelled abundance of selected COMs upon the ice surface and within the ice mantle due to excitation and ionization events from cosmic ray bombardment. We examine the effect of radiolysis on three C2H4O2 isomers – methyl formate (HCOOCH3), glycolaldehyde (HCOCH2OH), and acetic acid (CH3COOH) – and a chemically similar molecule, dimethyl ether (CH3OCH3), in cold dark clouds. We then compare our modelled gaseous abundances with observed abundances in TMC-1, L1689B, and B1-b.


Author(s):  
Pratama Istiadi Guntoro ◽  
Yousef Ghorbani ◽  
Jan Rosenkranz

AbstractCurrent advances and developments in automated mineralogy have made it a crucial key technology in the field of process mineralogy, allowing better understanding and connection between mineralogy and the beneficiation process. The latest developments in X‑ray micro-computed tomography (µCT) have shown a great potential to let it become the next-generation automated mineralogy technique. µCT’s main benefit lies in its capability to allow 3D monitoring of the internal structure of the ore sample at resolutions down to a few hundred nanometers, thus excluding the common stereological error in conventional 2D analysis. Driven by the technological and computational progress, µCT is constantly developing as an analysis tool and successively it will become an essential technique in the field of process mineralogy. This study aims to assess the potential application of µCT systems, for 3D ore characterization through relevant case studies. The opportunities and platforms that µCT 3D ore characterization provides for process design and simulation in mineral processing are presented.


ChemPlusChem ◽  
2021 ◽  
Vol 86 (2) ◽  
pp. 232-240
Author(s):  
Ying Li ◽  
Lingpeng Meng ◽  
Yanli Zeng

Sign in / Sign up

Export Citation Format

Share Document