scholarly journals On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant

2014 ◽  
Vol 369 (1640) ◽  
pp. 20130221 ◽  
Author(s):  
Luca Dall'Osto ◽  
Stefano Cazzaniga ◽  
Masamitsu Wada ◽  
Roberto Bassi

Over-excitation of photosynthetic apparatus causing photoinhibition is counteracted by non-photochemical quenching (NPQ) of chlorophyll fluorescence, dissipating excess absorbed energy into heat. The PsbS protein plays a key role in this process, thus making the PsbS-less npq4 mutant unable to carry out qE, the major and most rapid component of NPQ. It was proposed that npq4 does perform qE-type quenching, although at lower rate than WT Arabidopsis . Here, we investigated the kinetics of NPQ in PsbS-depleted mutants of Arabidopsis . We show that red light was less effective than white light in decreasing maximal fluorescence in npq4 mutants. Also, the kinetics of fluorescence dark recovery included a decay component, qM, exhibiting the same amplitude and half-life in both WT and npq4 mutants. This component was uncoupler-sensitive and unaffected by photosystem II repair or mitochondrial ATP synthesis inhibitors. Targeted reverse genetic analysis showed that traits affecting composition of the photosynthetic apparatus, carotenoid biosynthesis and state transitions did not affect qM. This was depleted in the npq4phot2 mutant which is impaired in chloroplast photorelocation, implying that fluorescence decay, previously described as a quenching component in npq4 is, in fact, the result of decreased photon absorption caused by chloroplast relocation rather than a change in the activity of quenching reactions.

2019 ◽  
Vol 476 (20) ◽  
pp. 2981-3018 ◽  
Author(s):  
Petar H. Lambrev ◽  
Parveen Akhtar

Abstract The light reactions of photosynthesis are hosted and regulated by the chloroplast thylakoid membrane (TM) — the central structural component of the photosynthetic apparatus of plants and algae. The two-dimensional and three-dimensional arrangement of the lipid–protein assemblies, aka macroorganisation, and its dynamic responses to the fluctuating physiological environment, aka flexibility, are the subject of this review. An emphasis is given on the information obtainable by spectroscopic approaches, especially circular dichroism (CD). We briefly summarise the current knowledge of the composition and three-dimensional architecture of the granal TMs in plants and the supramolecular organisation of Photosystem II and light-harvesting complex II therein. We next acquaint the non-specialist reader with the fundamentals of CD spectroscopy, recent advances such as anisotropic CD, and applications for studying the structure and macroorganisation of photosynthetic complexes and membranes. Special attention is given to the structural and functional flexibility of light-harvesting complex II in vitro as revealed by CD and fluorescence spectroscopy. We give an account of the dynamic changes in membrane macroorganisation associated with the light-adaptation of the photosynthetic apparatus and the regulation of the excitation energy flow by state transitions and non-photochemical quenching.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gábor Bernát ◽  
Tomáš Zavřel ◽  
Eva Kotabová ◽  
László Kovács ◽  
Gábor Steinbach ◽  
...  

Photomorphogenesis is a process by which photosynthetic organisms perceive external light parameters, including light quality (color), and adjust cellular metabolism, growth rates and other parameters, in order to survive in a changing light environment. In this study we comprehensively explored the light color acclimation of Cyanobium gracile, a common cyanobacterium in turbid freshwater shallow lakes, using nine different monochromatic growth lights covering the whole visible spectrum from 435 to 687 nm. According to incident light wavelength, C. gracile cells performed great plasticity in terms of pigment composition, antenna size, and photosystem stoichiometry, to optimize their photosynthetic performance and to redox poise their intersystem electron transport chain. In spite of such compensatory strategies, C. gracile, like other cyanobacteria, uses blue and near far-red light less efficiently than orange or red light, which involves moderate growth rates, reduced cell volumes and lower electron transport rates. Unfavorable light conditions, where neither chlorophyll nor phycobilisomes absorb light sufficiently, are compensated by an enhanced antenna size. Increasing the wavelength of the growth light is accompanied by increasing photosystem II to photosystem I ratios, which involve better light utilization in the red spectral region. This is surprisingly accompanied by a partial excitonic antenna decoupling, which was the highest in the cells grown under 687 nm light. So far, a similar phenomenon is known to be induced only by strong light; here we demonstrate that under certain physiological conditions such decoupling is also possible to be induced by weak light. This suggests that suboptimal photosynthetic performance of the near far-red light grown C. gracile cells is due to a solid redox- and/or signal-imbalance, which leads to the activation of this short-term light acclimation process. Using a variety of photo-biophysical methods, we also demonstrate that under blue wavelengths, excessive light is quenched through orange carotenoid protein mediated non-photochemical quenching, whereas under orange/red wavelengths state transitions are involved in photoprotection.


2019 ◽  
Vol 46 (6) ◽  
pp. 555 ◽  
Author(s):  
Milena T. Gerganova ◽  
Aygyun K. Faik ◽  
Maya Y. Velitchkova

The kinetics of photoinhibition in detached leaves from tomato plants (Solanium lycopersicum L. cv. M82) grown for 6 days under different combinations of optimal and moderately high temperature and optimal and high light intensity were studied. The inhibition of PSII was evaluated by changes in maximal quantum yield, the coefficient of photochemical quenching and the quantum yield of PSII. The changes of PSI activity was estimated by the redox state of P700. The involvement of different possible protective processes was checked by determination of nonphotochemical quenching and cyclic electron flow around PSI. To evaluate to what extent the photosynthetic apparatus and its response to high light treatment was affected by growth conditions, the kinetics of photoinhibition in isolated thylakoid membranes were also studied. The photochemical activities of both photosystems and changes in the energy distribution and interactions between them were evaluated by means of a Clark electrode and 77 K fluorescence analysis. The data showed an increased tolerance to photoinhibition in plants grown under a combination of moderately high temperature and light intensity, which was related to the stimulation of cyclic electron flow, PSI activity and rearrangements of pigment–protein complexes, leading to a decrease in the excitation energy delivered to PSII.


2014 ◽  
Vol 369 (1640) ◽  
pp. 20130223 ◽  
Author(s):  
Oliver Ebenhöh ◽  
Geoffrey Fucile ◽  
Giovanni Finazzi ◽  
Jean-David Rochaix ◽  
Michel Goldschmidt-Clermont

Photosynthetic eukaryotes house two photosystems with distinct light absorption spectra. Natural fluctuations in light quality and quantity can lead to unbalanced or excess excitation, compromising photosynthetic efficiency and causing photodamage. Consequently, these organisms have acquired several distinct adaptive mechanisms, collectively referred to as non-photochemical quenching (NPQ) of chlorophyll fluorescence, which modulates the organization and function of the photosynthetic apparatus. The ability to monitor NPQ processes fluorometrically has led to substantial progress in elucidating the underlying molecular mechanisms. However, the relative contribution of distinct NPQ mechanisms to variable light conditions in different photosynthetic eukaryotes remains unclear. Here, we present a mathematical model of the dynamic regulation of eukaryotic photosynthesis using ordinary differential equations. We demonstrate that, for Chlamydomonas , our model recapitulates the basic fluorescence features of short-term light acclimation known as state transitions and discuss how the model can be iteratively refined by comparison with physiological experiments to further our understanding of light acclimation in different species.


2019 ◽  
Vol 61 (1) ◽  
pp. 192-202 ◽  
Author(s):  
Masaru Kono ◽  
Hikaru Kawaguchi ◽  
Naoki Mizusawa ◽  
Wataru Yamori ◽  
Yoshihiro Suzuki ◽  
...  

Abstract It is well known that far-red light (FR; >700 nm) drives PSI photochemistry, but its effect on photosynthetic performance has received little attention. In this study, the effects of the addition of FR to red fluctuating light (FL) have on photosynthesis were examined in the leaves of Arabidopsis thaliana. Light-activated leaves were illuminated with FL [alternating high light/low light (HL/LL) at 800/30 μmol m−2 s−1] for 10–15 min without or with FR at intensities that reflected natural conditions. The CO2 assimilation rates upon the transition from HL to LL were significantly greater with FR than without FR. The enhancement of photosynthesis by FR was small under the steady-state conditions and in the HL phases of FL. Proton conductivity through the thylakoid membrane (gH+) in the LL phases of FL, estimated from the dark relaxation kinetics of the electrochromic absorbance shift, was greater with FR than without FR. The relaxation of non-photochemical quenching (NPQ) in the PSII antenna system and the increase in PSII photochemistry in the LL phases accelerated in the presence of FR. Similar FR-effects in FL were confirmed in typical sun and shade plants. On the basis of these results, we concluded that FR exerted beneficial effects on photosynthesis in FL by exciting PSI and accelerating NPQ relaxation and PSII-yield increase. This was probably because of the increased gH+, which would reflect faster ΔpH dissipation and ATP synthesis.


2019 ◽  
Vol 126 (4) ◽  
pp. 511-537 ◽  
Author(s):  
Alexandrina Stirbet ◽  
Dušan Lazár ◽  
Ya Guo ◽  
Govindjee Govindjee

Abstract Background With limited agricultural land and increasing human population, it is essential to enhance overall photosynthesis and thus productivity. Oxygenic photosynthesis begins with light absorption, followed by excitation energy transfer to the reaction centres, primary photochemistry, electron and proton transport, NADPH and ATP synthesis, and then CO2 fixation (Calvin–Benson cycle, as well as Hatch–Slack cycle). Here we cover some of the discoveries related to this process, such as the existence of two light reactions and two photosystems connected by an electron transport ‘chain’ (the Z-scheme), chemiosmotic hypothesis for ATP synthesis, water oxidation clock for oxygen evolution, steps for carbon fixation, and finally the diverse mechanisms of regulatory processes, such as ‘state transitions’ and ‘non-photochemical quenching’ of the excited state of chlorophyll a. Scope In this review, we emphasize that mathematical modelling is a highly valuable tool in understanding and making predictions regarding photosynthesis. Different mathematical models have been used to examine current theories on diverse photosynthetic processes; these have been validated through simulation(s) of available experimental data, such as chlorophyll a fluorescence induction, measured with fluorometers using continuous (or modulated) exciting light, and absorbance changes at 820 nm (ΔA820) related to redox changes in P700, the reaction centre of photosystem I. Conclusions We highlight here the important role of modelling in deciphering and untangling complex photosynthesis processes taking place simultaneously, as well as in predicting possible ways to obtain higher biomass and productivity in plants, algae and cyanobacteria.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1216
Author(s):  
Marine Messant ◽  
Anja Krieger-Liszkay ◽  
Ginga Shimakawa

Photosynthesis has to work efficiently in contrasting environments such as in shade and full sun. Rapid changes in light intensity and over-reduction of the photosynthetic electron transport chain cause production of reactive oxygen species, which can potentially damage the photosynthetic apparatus. Thus, to avoid such damage, photosynthetic electron transport is regulated on many levels, including light absorption in antenna, electron transfer reactions in the reaction centers, and consumption of ATP and NADPH in different metabolic pathways. Many regulatory mechanisms involve the movement of protein-pigment complexes within the thylakoid membrane. Furthermore, a certain number of chloroplast proteins exist in different oligomerization states, which temporally associate to the thylakoid membrane and modulate their activity. This review starts by giving a short overview of the lipid composition of the chloroplast membranes, followed by describing supercomplex formation in cyclic electron flow. Protein movements involved in the various mechanisms of non-photochemical quenching, including thermal dissipation, state transitions and the photosystem II damage–repair cycle are detailed. We highlight the importance of changes in the oligomerization state of VIPP and of the plastid terminal oxidase PTOX and discuss the factors that may be responsible for these changes. Photosynthesis-related protein movements and organization states of certain proteins all play a role in acclimation of the photosynthetic organism to the environment.


2001 ◽  
Vol 44 (5) ◽  
pp. 53-60 ◽  
Author(s):  
C.A. Martín ◽  
O.M. Alfano ◽  
A.E. Cassano

Sometimes, provision of water for domiciliary consumption faces the problem of natural contamination originated by the presence of organic substances such as humic or fulvic acids. Very often, after conventional sanitary treatments this water exhibits a persistent yellowish coloration that affects its use. Moreover, these substances may act as precursors of tri-halomethanes formation during pre-desinfection with chlorine. This paper presents, with a simplified mechanistic approach, the intrinsic reaction kinetics of natural water decolorization employing UV radiation and hydrogen peroxide. The main variables for the model are: contaminant concentration expressed as TOC, hydrogen peroxide concentration and the photon absorption rate.


1981 ◽  
Vol 59 (7) ◽  
pp. 1037-1044 ◽  
Author(s):  
Eva Gudgin ◽  
Ricardo Lopez-Delgado ◽  
William R. Ware

Tryptophan fluorescence decay kinetics have been systematically investigated in aqueous solutions as a function of pH as well as in a variety of buffer solutions. Below pH 7.0, the decay appears to be double exponential with a subnanosecond component confirming the previous findings of Rayner and Szabo (3). In the low pH region, where the proton concentration becomes kinetically significant, tryptophan fluorescence is collisionally quenched by [H+] with diffusion controlled rate and no experimental evidence is found regarding the appearance at low pH of a new tryptophan molecular species, namely the cationic form. At pH ≥ 7.0, the decay becomes triple-exponential with the appearance of a long component whose contribution to the total emission intensity increases rapidly with increasing pH at the expense of the other two. Lifetimes and relative intensities of each decay component depend in a complex way on pH and on the buffer chemical composition.


Sign in / Sign up

Export Citation Format

Share Document