scholarly journals The centriole duplication cycle

2014 ◽  
Vol 369 (1650) ◽  
pp. 20130460 ◽  
Author(s):  
Elif Nur Fırat-Karalar ◽  
Tim Stearns

Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole ‘origin of duplication’ that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells.

2021 ◽  
Author(s):  
Johnny M Tkach ◽  
Jonathan Strecker ◽  
Daniel Durocher ◽  
Laurence Pelletier

Centrosomes consist of two centrioles surrounded by pericentriolar material and are the main microtubule organizing centre in metazoans. Centrosome number is tightly regulated by limiting centriole duplication to a single round per cell cycle. This control is achieved by multiple mechanisms, including the regulation of the protein kinase PLK4, a master regulator of centrosome biogenesis. In an evolutionarily conserved process, altered centrosome numbers cause a p53-dependent growth arrest through mechanisms that are still poorly defined. To gain insights into this process, we used a series of genome-wide CRISPR/Cas9 screens to identify factors important for growth arrest after chemically altering PLK4 activity to cause too many or too few centrosomes. We identify TRIM37 as a key mediator of growth arrest when PLK4 activity is partially or fully inhibited but is not required for growth arrest triggered by supernumerary centrosomes. Moreover, this activity is independent of its role as an E3 ligase and distinct from other TRIM37 functions described to date. We propose that altered PLK4 activity itself can signal growth arrest.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2156 ◽  
Author(s):  
Rustem E. Uzbekov ◽  
Tomer Avidor-Reiss

The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensitive primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell’s progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles, which are discussed in this review.


2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Kei K. Ito ◽  
Koki Watanabe ◽  
Haruki Ishida ◽  
Kyohei Matsuhashi ◽  
Takumi Chinen ◽  
...  

Centrioles duplicate in interphase only once per cell cycle. Newly formed centrioles remain associated with their mother centrioles. The two centrioles disengage at the end of mitosis, which licenses centriole duplication in the next cell cycle. Therefore, timely centriole disengagement is critical for the proper centriole duplication cycle. However, the mechanisms underlying centriole engagement during interphase are poorly understood. Here, we show that Cep57 and Cep57L1 cooperatively maintain centriole engagement during interphase. Codepletion of Cep57 and Cep57L1 induces precocious centriole disengagement in interphase without compromising cell cycle progression. The disengaged daughter centrioles convert into centrosomes during interphase in a Plk1-dependent manner. Furthermore, the centrioles reduplicate and the centriole number increases, which results in chromosome segregation errors. Overall, these findings demonstrate that the maintenance of centriole engagement by Cep57 and Cep57L1 during interphase is crucial for the tight control of centriole copy number and thus for proper chromosome segregation.


2020 ◽  
Author(s):  
Kei K. Ito ◽  
Koki Watanabe ◽  
Haruki Ishida ◽  
Kyohei Matsuhashi ◽  
Takumi Chinen ◽  
...  

Centrioles duplicate in the interphase only once per cell cycle. Newly formed centrioles remain associated with their mother centrioles. The two centrioles disengage at the end of mitosis, which licenses centriole duplication in the next cell cycle. Therefore, timely centriole disengagement is critical for the proper centriole duplication cycle. However, the mechanisms underlying centriole engagement during interphase are poorly understood. Here, we show that Cep57 and Cep57L1 cooperatively maintain centriole engagement during interphase. Co-depletion of Cep57 and Cep57L1 induces precocious centriole disengagement in the interphase without compromising cell cycle progression. The disengaged daughter centrioles convert into centrosomes during interphase in a Plk1-dependent manner. Furthermore, the centrioles reduplicate and the centriole number increases, which results in chromosome segregation errors. Overall, these findings demonstrate that the maintenance of centriole engagement by Cep57 and Cep57L1 during interphase is crucial for the tight control of centriole copy number and thus for proper chromosome segregation.


2010 ◽  
Vol 191 (2) ◽  
pp. 331-346 ◽  
Author(s):  
Moe R. Mahjoub ◽  
Zhigang Xie ◽  
Tim Stearns

Centrioles form the core of the centrosome in animal cells and function as basal bodies that nucleate and anchor cilia at the plasma membrane. In this paper, we report that Cep120 (Ccdc100), a protein previously shown to be involved in maintaining the neural progenitor pool in mouse brain, is associated with centriole structure and function. Cep120 is up-regulated sevenfold during differentiation of mouse tracheal epithelial cells (MTECs) and localizes to basal bodies. Cep120 localizes preferentially to the daughter centriole in cycling cells, and this asymmetry between mother and daughter centrioles is relieved coincident with new centriole assembly. Photobleaching recovery analysis identifies two pools of Cep120, differing in their halftime at the centriole. We find that Cep120 is required for centriole duplication in cycling cells, centriole amplification in MTECs, and centriole overduplication in S phase–arrested cells. We propose that Cep120 is required for centriole assembly and that the observed defect in neuronal migration might derive from a defect in this process.


2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Madison Atkins ◽  
Jiří Týč ◽  
Shahaan Shafiq ◽  
Manu Ahmed ◽  
Eloïse Bertiaux ◽  
...  

Cilia and flagella are required for cell motility and sensing the external environment and can vary in both length and stability. Stable flagella maintain their length without shortening and lengthening and are proposed to “lock” at the end of growth, but molecular mechanisms for this lock are unknown. We show that CEP164C contributes to the locking mechanism at the base of the flagellum in Trypanosoma brucei. CEP164C localizes to mature basal bodies of fully assembled old flagella, but not to growing new flagella, and basal bodies only acquire CEP164C in the third cell cycle after initial assembly. Depletion of CEP164C leads to dysregulation of flagellum growth, with continued growth of the old flagellum, consistent with defects in a flagellum locking mechanism. Inhibiting cytokinesis results in CEP164C acquisition on the new flagellum once it reaches the old flagellum length. These results provide the first insight into the molecular mechanisms regulating flagella growth in cells that must maintain existing flagella while growing new flagella.


2005 ◽  
Vol 171 (3) ◽  
pp. 437-445 ◽  
Author(s):  
Chaozhong Zou ◽  
Jun Li ◽  
Yujie Bai ◽  
William T. Gunning ◽  
David E. Wazer ◽  
...  

In mammalian cells, the centrosome consists of a pair of centrioles and amorphous pericentriolar material. The pair of centrioles, which are the core components of the centrosome, duplicate once per cell cycle. Centrosomes play a pivotal role in orchestrating the formation of the bipolar spindle during mitosis. Recent studies have linked centrosomal activity on centrioles or centriole-associated structures to cytokinesis and cell cycle progression through G1 into the S phase. In this study, we have identified centrobin as a centriole-associated protein that asymmetrically localizes to the daughter centriole. The silencing of centrobin expression by small interfering RNA inhibited centriole duplication and resulted in centrosomes with one or no centriole, demonstrating that centrobin is required for centriole duplication. Furthermore, inhibition of centriole duplication by centrobin depletion led to impaired cytokinesis.


2012 ◽  
Vol 197 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Balca R. Mardin ◽  
Elmar Schiebel

The centrosome, which consists of two centrioles and the surrounding pericentriolar material, is the primary microtubule-organizing center (MTOC) in animal cells. Like chromosomes, centrosomes duplicate once per cell cycle and defects that lead to abnormalities in the number of centrosomes result in genomic instability, a hallmark of most cancer cells. Increasing evidence suggests that the separation of the two centrioles (disengagement) is required for centrosome duplication. After centriole disengagement, a proteinaceous linker is established that still connects the two centrioles. In G2, this linker is resolved (centrosome separation), thereby allowing the centrosomes to separate and form the poles of the bipolar spindle. Recent work has identified new players that regulate these two processes and revealed unexpected mechanisms controlling the centrosome cycle.


2014 ◽  
Vol 369 (1650) ◽  
pp. 20130461 ◽  
Author(s):  
Fikret G. Agircan ◽  
Elmar Schiebel ◽  
Balca R. Mardin

The centrosome is the main microtubule (MT)-organizing centre of animal cells. It consists of two centrioles and a multi-layered proteinaceous structure that surrounds the centrioles, the so-called pericentriolar material. Centrosomes promote de novo assembly of MTs and thus play important roles in Golgi organization, cell polarity, cell motility and the organization of the mitotic spindle. To execute these functions, centrosomes have to adopt particular cellular positions. Actin and MT networks and the association of the centrosomes to the nuclear envelope define the correct positioning of the centrosomes. Another important feature of centrosomes is the centrosomal linker that connects the two centrosomes. The centrosome linker assembles in late mitosis/G1 simultaneously with centriole disengagement and is dissolved before or at the beginning of mitosis. Linker dissolution is important for mitotic spindle formation, and its cell cycle timing has profound influences on the execution of mitosis and proficiency of chromosome segregation. In this review, we will focus on the mechanisms of centrosome positioning and separation, and describe their functions and mechanisms in the light of recent findings.


2011 ◽  
Vol 22 (7) ◽  
pp. 1035-1044 ◽  
Author(s):  
Delphine Gogendeau ◽  
Ilse Hurbain ◽  
Graca Raposo ◽  
Jean Cohen ◽  
France Koll ◽  
...  

Centrioles and basal bodies are structurally related organelles composed of nine microtubule (MT) triplets. Studies performed in Caenorhabditis elegans embryos have shown that centriole duplication takes place in sequential way, in which different proteins are recruited in a specific order to assemble a procentriole. ZYG-1 initiates centriole duplication by triggering the recruitment of a complex of SAS-5 and SAS-6, which then recruits the final player, SAS-4, to allow the incorporation of MT singlets. It is thought that a similar mechanism (that also involves additional proteins) is present in other animal cells, but it remains to be investigated whether the same players and their ascribed functions are conserved during basal body duplication in cells that exclusively contain basal bodies. To investigate this question, we have used the multiciliated protist Paramecium tetraurelia. Here we show that in the absence of PtSas4, two types of defects in basal body duplication can be identified. In the majority of cases, the germinative disk and cartwheel, the first structures assembled during duplication, are not detected. In addition, if daughter basal bodies were formed, they invariably had defects in MT recruitment. Our results suggest that PtSas4 has a broader function than its animal orthologues.


Sign in / Sign up

Export Citation Format

Share Document