scholarly journals Biomechanics and biomimetics in insect-inspired flight systems

2016 ◽  
Vol 371 (1704) ◽  
pp. 20150390 ◽  
Author(s):  
Hao Liu ◽  
Sridhar Ravi ◽  
Dmitry Kolomenskiy ◽  
Hiroto Tanaka

Insect- and bird-size drones—micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10 4 –10 5 or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’.

2018 ◽  
Vol 70 (1) ◽  
Author(s):  
E. Farrell Helbling ◽  
Robert J. Wood

Flying insects are able to navigate complex and highly dynamic environments, can rapidly change their flight speeds and directions, are robust to environmental disturbances, and are capable of long migratory flights. However, flying robots at similar scales have not yet demonstrated these characteristics autonomously. Recent advances in mesoscale manufacturing, novel actuation, control, and custom integrated circuit (IC) design have enabled the design of insect-scale flapping wing micro air vehicles (MAVs). However, there remain numerous constraints to component technologies—for example, scalable high-energy density power storage—that limit their functionality. This paper highlights the recent developments in the design of small-scale flapping wing MAVs, specifically discussing the various power and actuation technologies selected at various vehicle scales as well as the control architecture and avionics onboard the vehicle. We also outline the challenges associated with creating an integrated insect-scale flapping wing MAV.


2020 ◽  
Author(s):  
William Johns ◽  
Lisa Davis ◽  
Mark Jankauski

AbstractFlapping insect wings deform during flight. This deformation benefits the insect’s aerodynamic force production as well as energetic efficiency. However, it is challenging to measure wing displacement field in flying insects. Many points must be tracked over the wing’s surface to resolve its instantaneous shape. To reduce the number of points one is required to track, we propose a physics-based reconstruction method called System Equivalent Reduction Expansion Processes (SEREP) to estimate wing deformation and strain from sparse measurements. Measurement locations are determined using a Weighted Normalized Modal Displacement (NMD) method. We experimentally validate the reconstruction technique by flapping a paper wing from 5-9 Hz with 45° and measuring strain at three locations. Two measurements are used for the reconstruction and the third for validation. Strain reconstructions had a maximal error of 30% in amplitude. We extend this methodology to a more realistic insect wing through numerical simulation. We show that wing displacement can be estimated from sparse displacement or strain measurements, and that additional sensors spatially average measurement noise to improve reconstruction accuracy. This research helps overcome some of the challenges of measuring full-field dynamics in flying insects and provides a framework for strain-based sensing in insect-inspired flapping robots.


2001 ◽  
Vol 204 (21) ◽  
pp. 3683-3691 ◽  
Author(s):  
Mark A. Frye

SUMMARYIn insects, fast sensory feedback from specialized mechanoreceptors is integrated with guidance cues descending from the visual system to control flight behavior. A proprioceptive sensory organ found in both locusts and moths, the wing hinge stretch receptor, has been extensively studied in locusts for its powerful influence on the activity of flight muscle motoneurons and interneurons. The stretch receptor fires a high-frequency burst of action potentials near the top of each wingstroke and encodes kinematic variables such as amplitude and timing. Here, I describe the effects of stretch receptor ablation on the visual control of lift during flight in the hawkmoth Manduca sexta. Using a combination of extracellular muscle recordings, force and position measurements and high-speed video recording, I tracked power muscle activity, net vertical flight force (lift), abdomen deflection and wing kinematics in response to image motions of varying velocity during tethered flight in a wind tunnel. As a result of bilateral ablation of the wing hinge stretch receptors, visually evoked lift decreased to nearly one-third of that exhibited by intact animals. The phase and frequency of indirect power muscle action potentials and the patterns of abdominal deflection were unaffected; however, wingstroke amplitude was clearly reduced after ablation. Collectively, these results suggest that stretch receptor feedback is integrated with descending visual cues to control wing kinematics and the resultant aerodynamic force production during flight.


Drones ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 39
Author(s):  
P. Lane ◽  
G. Throneberry ◽  
I. Fernandez ◽  
M. Hassanalian ◽  
R. Vasconcellos ◽  
...  

Throughout the last decade, there has been an increased demand for intricate flapping-wing drones with different capabilities than larger drones. The design of flapping-wing drones is focused on endurance and stability, as these are two of the main challenges of these systems. Researchers have recently been turning towards bioinspiration as a way to enhance aerodynamic performance. In this work, the propulsion system of a flapping-wing micro air vehicle is investigated to identify the limitations and drawbacks of specific designs. Each system has a tandem wing configuration inspired by a dragonfly, with wing shapes inspired by a bumblebee. For the design of this flapping-wing, a sizing process is carried out. A number of actuation mechanisms are considered, and two different mechanisms are designed and integrated into a flapping-wing system and compared to one another. The second system is tested using a thrust stand to investigate the impact of wing configurations on aerodynamic force production and the trend of force production from varying flapping frequency. Results present the optimal wing configuration of those tested and that an angle of attack of two degrees yields the greatest force production. A tethered flight test is conducted to examine the stability and aerodynamic capabilities of the drone, and challenges of flapping-wing systems and solutions that can lead to successful flight are presented. Key challenges to the successful design of these systems are weight management, force production, and stability and control.


2018 ◽  
Vol 70 (1) ◽  
Author(s):  
Satyandra K. Gupta

Flying insects exhibit truly remarkable capabilities. There has been significant interest in developing small-scale flying robots by taking inspiration from flying insects. The paper by Helbling and Wood reports remarkable progress made by the research community in realizing insect-scale flapping wing vehicles and identifies research challenges and opportunities. This discussion builds upon their paper and examines the potential of insect-scale flapping wing flight from an application point of view. It summarizes requirements and mention implications of these requirements on propulsion, power, and control architecture.


Author(s):  
Jong-Seob Han ◽  
Jae-Hung Han

In this paper, aerodynamic characteristics of two flapping wings in clap-and-fling motion at Re of ∼104, which corresponds to the flight regime of flapping-wing micro air vehicles, was investigated. The test employing dynamically scaled-up robotic arms installed on a water tank revealed that the wingbeat motion at such high Re in1duced the fully developed wake within two wingbeat cycles. This wake widely influenced the lift production covering the entire wingbeat period; the wings earned the additional lift during the entire downstroke, and lost the lift during the upstroke. Chordwise cross-sectional DPIV showed the massive downwash with enlarged tip vortices, when the wake was fully developed. The wake blew down the headwind and reduced the effective angles of attack. In the case of the clap-and-fling motion, the wake was leaned toward the dorsal part, in which the wings created the clap-and-fling motion, causing the global fluctuation of the aerodynamic force production.


2016 ◽  
Vol 219 (22) ◽  
pp. 3532-3543 ◽  
Author(s):  
Bo Cheng ◽  
Bret W. Tobalske ◽  
Donald R. Powers ◽  
Tyson L. Hedrick ◽  
Yi Wang ◽  
...  

2018 ◽  
Vol 1 (2) ◽  
pp. 100-112
Author(s):  
Elia Damayanti ◽  
Septri Widiono ◽  
Satria Putra Utama

Modernization in catch fisheries sector by mean machinary application for fishing could be devided into some phases. Every phases showed some production relation between the ship owners and their labours. In the Marxist tradition of thought, the study about these relationship could be gained by elaborate the mode of production. For more specific, this study were elaboratethe mode of production in every phases of modernization. Mode of production consisted force of production and relation of production. In this context, force of production was mean of production like ships, net and seine. While relation of production wasthe organization of fishermen, power and control by the owners to their labours. The study was conducted by using qualitative method so depth interviewed of some key informants had been main method in collecting datas. The results of the study indicated that fisheries modernization in research area held into four phases. We called them as period oflancang, trawl, bagan, and purseseine. Further more, the mode of production in every phases as follow namely, lancang was subsistence production, trawl was commercialist production, and bagan was commercialist production. While purseseine had has two mode of production, namely commercialist production for Bengkulu’s owner and  capitalist production  for Chinese’s owner.Keywords : mode of production, Pulau Baai, Lancang, Trawl, Bagan, and Purse Seine.


Author(s):  
Wei Shyy ◽  
Chang-kwon Kang ◽  
Pakpong Chirarattananon ◽  
Sridhar Ravi ◽  
Hao Liu

There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted.


Sign in / Sign up

Export Citation Format

Share Document