Effects of stretch receptor ablation on the optomotor control of lift in the hawkmothManduca sexta

2001 ◽  
Vol 204 (21) ◽  
pp. 3683-3691 ◽  
Author(s):  
Mark A. Frye

SUMMARYIn insects, fast sensory feedback from specialized mechanoreceptors is integrated with guidance cues descending from the visual system to control flight behavior. A proprioceptive sensory organ found in both locusts and moths, the wing hinge stretch receptor, has been extensively studied in locusts for its powerful influence on the activity of flight muscle motoneurons and interneurons. The stretch receptor fires a high-frequency burst of action potentials near the top of each wingstroke and encodes kinematic variables such as amplitude and timing. Here, I describe the effects of stretch receptor ablation on the visual control of lift during flight in the hawkmoth Manduca sexta. Using a combination of extracellular muscle recordings, force and position measurements and high-speed video recording, I tracked power muscle activity, net vertical flight force (lift), abdomen deflection and wing kinematics in response to image motions of varying velocity during tethered flight in a wind tunnel. As a result of bilateral ablation of the wing hinge stretch receptors, visually evoked lift decreased to nearly one-third of that exhibited by intact animals. The phase and frequency of indirect power muscle action potentials and the patterns of abdominal deflection were unaffected; however, wingstroke amplitude was clearly reduced after ablation. Collectively, these results suggest that stretch receptor feedback is integrated with descending visual cues to control wing kinematics and the resultant aerodynamic force production during flight.

2008 ◽  
Vol 6 (38) ◽  
pp. 735-747 ◽  
Author(s):  
Simon M. Walker ◽  
Adrian L. R. Thomas ◽  
Graham K. Taylor

Here, we present a detailed analysis of the wing kinematics and wing deformations of desert locusts ( Schistocerca gregaria , Forskål) flying tethered in a wind tunnel. We filmed them using four high-speed digital video cameras, and used photogrammetry to reconstruct the motion of more than 100 identified points. Whereas the hindwing motions were highly stereotyped, the forewing motions showed considerable variation, consistent with a role in flight control. Both wings were positively cambered on the downstroke. The hindwing was cambered through an ‘umbrella effect’ whereby the trailing edge tension compressed the radial veins during the downstroke. Hindwing camber was reversed on the upstroke as the wing fan corrugated, reducing the projected area by 30 per cent, and releasing the tension in the trailing edge. Both the wings were strongly twisted from the root to the tip. The linear decrease in incidence along the hindwing on the downstroke precisely counteracts the linear increase in the angle of attack that would otherwise occur in root flapping for an untwisted wing. The consequent near-constant angle of attack is reminiscent of the optimum for a propeller of constant aerofoil section, wherein a linear twist distribution allows each section to operate at the unique angle of attack maximizing the lift to drag ratio. This implies tuning of the structural, morphological and kinematic parameters of the hindwing for efficient aerodynamic force production.


2011 ◽  
Vol 9 (71) ◽  
pp. 1194-1207 ◽  
Author(s):  
Simon M. Walker ◽  
Adrian L. R. Thomas ◽  
Graham K. Taylor

The alula is a hinged flap found at the base of the wings of most brachyceran Diptera. The alula accounts for up to 10 per cent of the total wing area in hoverflies (Syrphidae), and its hinged arrangement allows the wings to be swept back over the thorax and abdomen at rest. The alula is actuated via the third axillary sclerite, which is a component of the wing hinge that is involved in wing retraction and control. The third axillary sclerite has also been implicated in the gear change mechanism of flies. This mechanism allows rapid switching between different modes of wing kinematics, by imposing or removing contact with a mechanical stop limiting movement of the wing during the lower half of the downstroke. The alula operates in two distinct states during flight—flipped or flat—and we hypothesize that its state indicates switching between different flight modes. We used high-speed digital video of free-flying hoverflies ( Eristalis tenax and Eristalis pertinax ) to investigate whether flipping of the alula was associated with changes in wing and body kinematics. We found that alula state was associated with different distributions of multiple wing kinematic parameters, including stroke amplitude, stroke deviation angle, downstroke angle of incidence and timing of supination. Changes in all of these parameters have previously been linked to gear change in flies. Symmetric flipping of the alulae was associated with changes in the symmetric linear acceleration of the body, while asymmetric flipping of the alulae was associated with asymmetric angular acceleration of the body. We conclude that the wings produce less aerodynamic force when the alula is flipped, largely as a result of the accompanying changes in wing kinematics. The alula changes state at mid-downstroke, which is the point at which the gear change mechanism is known to come into effect. This transition is accompanied by changes in the other wing kinematic parameters. We therefore find that the state of the alula is linked to the same parameters as are affected by the gear change mechanism. We conclude that the state of the alula does indeed indicate the operation of different flight modes in Eristalis , and infer that a likely mechanism for these changes in flight mode is the gear change mechanism.


2016 ◽  
Vol 371 (1704) ◽  
pp. 20150390 ◽  
Author(s):  
Hao Liu ◽  
Sridhar Ravi ◽  
Dmitry Kolomenskiy ◽  
Hiroto Tanaka

Insect- and bird-size drones—micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10 4 –10 5 or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’.


2018 ◽  
Vol 15 (143) ◽  
pp. 20180102 ◽  
Author(s):  
Ayodeji T. Bode-Oke ◽  
Samane Zeyghami ◽  
Haibo Dong

In this study, we investigated the backward free flight of a dragonfly, accelerating in a flight path inclined to the horizontal. The wing and body kinematics were reconstructed from the output of three high-speed cameras using a template-based subdivision surface reconstruction method, and numerical simulations using an immersed boundary flow solver were conducted to compute the forces and visualize the flow features. During backward flight, the dragonfly maintained an upright body posture of approximately 90° relative to the horizon. The upright body posture was used to reorient the stroke plane and the flight force in the global frame; a mechanism known as ‘force vectoring’ which was previously observed in manoeuvres of other flying animals. In addition to force vectoring, we found that while flying backward, the dragonfly flaps its wings with larger angles of attack in the upstroke (US) when compared with forward flight. Also, the backward velocity of the body in the upright position enhances the wings' net velocity in the US. The combined effect of the angle of attack and wing net velocity yields large aerodynamic force generation in the US, with the average magnitude of the force reaching values as high as two to three times the body weight. Corresponding to these large forces was the presence of a strong leading edge vortex (LEV) at the onset of US which remained attached up until wing reversal. Finally, wing–wing interaction was found to enhance the aerodynamic performance of the hindwings (HW) during backward flight. Vorticity from the forewings’ trailing edge fed directly into the HW LEV to increase its circulation and enhance force production.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Chenyang Wang ◽  
Weiping Zhang ◽  
Junqi Hu ◽  
Jiaxin Zhao ◽  
Yang Zou

This study proposes a modified quasisteady aerodynamic model for the sub-100-milligram insect-inspired flapping-wing robot presented by the authors in a previous paper. The model, which is based on blade-element theory, considers the aerodynamic mechanisms of circulation, dissipation, and added-mass, as well as the inertial effect. The aerodynamic force and moment acting on the wing are calculated based on the two-degree-of-freedom (2-DOF) wing kinematics of flapping and rotating. In order to validate the model, we used a binocular high-speed photography system and a customized lift measurement system to perform simultaneous measurements of the wing kinematics and the lift of the robot under different input voltages. The results of these measurements were all in close agreement with the estimates generated by the proposed model. In addition, based on the model, this study analyzes the 2-DOF flapping-wing dynamics of the robot and provides an estimate of the passive rotation—the main factor in generating lift—from the measured flapping kinematics. The analysis also reveals that the calculated rotating kinematics of the wing under different input voltages accord well with the measured rotating kinematics. We expect that the model presented here will be useful in developing a control strategy for our sub-100 mg insect-inspired flapping-wing robot.


2001 ◽  
Vol 204 (4) ◽  
pp. 627-635 ◽  
Author(s):  
F.O. Lehmann ◽  
M.H. Dickinson

In this study, we have investigated how enhanced total flight force production compromises steering performance in tethered flying fruit flies, Drosophila melanogaster. The animals were flown in a closed-loop virtual-reality flight arena in which they modulated total flight force production in response to vertically oscillating visual patterns. By simultaneously measuring stroke amplitude and stroke frequency, we recorded the ability of each fly to modulate its wing kinematics at different levels of aerodynamic force production. At a flight force that exactly compensates body weight, the temporal deviations with which fruit flies vary their stroke amplitude and frequency are approximately 2.7 degrees and 4.8 Hz of their mean value, respectively. This variance in wing kinematics decreases with increasing flight force production, and at maximum force production fruit flies are restricted to a unique combination of stroke amplitude, stroke frequency and mean force coefficient. This collapse in the kinematic envelope during peak force production could greatly attenuate the manoeuvrability and stability of animals in free flight.


Author(s):  
Yi Zhang ◽  
Ka Chung Chan ◽  
Sau Chung Fu ◽  
Christopher Yu Hang Chao

Abstract Flutter-driven triboelectric nanogenerator (FTENG) is one of the most promising methods to harvest small-scale wind energy. Wind causes self-fluttering motion of a flag in the FTENG to generate electricity by contact electrification. A lot of studies have been conducted to enhance the energy output by increasing the surface charge density of the flag, but only a few researches tried to increase the converting efficiency by enlarging the flapping motion. In this study, we show that by simply replacing the rigid flagpole in the FTENG with a flexible flagpole, the energy conversion efficiency is augmented and the energy output is enhanced. It is found that when the flag flutters, the flagpole also undergoes aerodynamic force. The lift force generated from the fluttering flag applies a periodic rotational moment on the flagpole, and causes the flagpole to vibrate. The vibration of the flagpole, in turn amplifies the flutter of the flag. Both the fluttering dynamics of the flags with rigid and flexible flagpoles have been recorded by a high-speed camera. When the flag was held by a flexible flagpole, the fluttering amplitude and the contact area between the flag and electrode plates were increased. The energy enhancement increased as the flow velocity increased and the enhancement can be 113 times when the wind velocity is 10 m/s. The thickness of the flagpole was investigated. An optimal output of open-circuit voltage reaching 1128 V (peak-to-peak value) or 312.40 V (RMS value), and short-circuit current reaching 127.67 μA (peak-to-peak value) or 31.99 μA (RMS value) at 12.21 m/s flow velocity was achieved. This research presents a simple design to enhance the output performance of an FTENG by amplifying the fluttering amplitude. Based on the performance obtained in this study, the improved FTENG has the potential to apply in a smart city for driving electronic devices as a power source for IoT applications.


Author(s):  
Dilong Guo ◽  
Wen Liu ◽  
Junhao Song ◽  
Ye Zhang ◽  
Guowei Yang

The aerodynamic force acting on the pantograph by the airflow is obviously unsteady and has a certain vibration frequency and amplitude, while the high-speed train passes through the tunnel. In addition to the unsteady behavior in the open-air operation, the compressive and expansion waves in the tunnel will be generated due to the influence of the blocking ratio. The propagation of the compression and expansion waves in the tunnel will affect the pantograph pressure distribution and cause the pantograph stress state to change significantly, which affects the current characteristics of the pantograph. In this paper, the aerodynamic force of the pantograph is studied with the method of the IDDES combined with overset grid technique when high speed train passes through the tunnel. The results show that the aerodynamic force of the pantograph is subjected to violent oscillations when the pantograph passes through the tunnel, especially at the entrance of the tunnel, the exit of the tunnel and the expansion wave passing through the pantograph. The changes of the pantograph aerodynamic force can reach a maximum amplitude of 106%. When high-speed trains pass through tunnels at different speeds, the aerodynamic coefficients of the pantographs are roughly the same.


2020 ◽  
Author(s):  
Kasper Krommes ◽  
Mathias F. Nielsen ◽  
Laura Krohn ◽  
Birk M. Grønfeldt ◽  
Kristian Thorborg ◽  
...  

AbstractThe Nordic Hamstring exercise reduces hamstring strain injuries in football and other sports, but the exercise is not well adopted in practice. Barriers from practitioners include fear of performance decrements, due to lack of specificity of the exercise with high speed running. However, in theory, increased eccentric hamstring strength could transfer to faster sprinting due to higher horizontal force production. Studies on the effect of the Nordic Hamstring exercise on performance have been conflicting and no synthesis of the evidence exists. We therefore pose the following question: does including the Nordic Hamstring exercise hamper sprint or jump performance in athletes? We will answer this question by performing a systematic review of the literature, critically appraise relevant studies, and GRADE the evidence across key outcomes and perform meta-analyses, meta-regression and subgroup analyses. In this protocol we outline the planned methods and procedures.Progress reportBesides this protocol, our data extraction form and the process of data extraction has been piloted on 3 relevant studies, along with familiarization with the Risk of Bias 2.0 tool. We have also comprised a preliminary search strategy for PubMed.Supplementary filesData Extraction Form (.pdf)Populated PRISMA-P checklist (.pdf)


Sign in / Sign up

Export Citation Format

Share Document