scholarly journals Phylogenetic evidence for the modular evolution of metazoan signalling pathways

2017 ◽  
Vol 372 (1713) ◽  
pp. 20150477 ◽  
Author(s):  
Leslie S. Babonis ◽  
Mark Q. Martindale

Communication among cells was paramount to the evolutionary increase in cell type diversity and, ultimately, the origin of large body size. Across the diversity of Metazoa, there are only few conserved cell signalling pathways known to orchestrate the complex cell and tissue interactions regulating development; thus, modification to these few pathways has been responsible for generating diversity during the evolution of animals. Here, we summarize evidence for the origin and putative function of the intracellular, membrane-bound and secreted components of seven metazoan cell signalling pathways with a special focus on early branching metazoans (ctenophores, poriferans, placozoans and cnidarians) and basal unikonts (amoebozoans, fungi, filastereans and choanoflagellates). We highlight the modular incorporation of intra- and extracellular components in each signalling pathway and suggest that increases in the complexity of the extracellular matrix may have further promoted the modulation of cell signalling during metazoan evolution. Most importantly, this updated view of metazoan signalling pathways highlights the need for explicit study of canonical signalling pathway components in taxa that do not operate a complete signalling pathway. Studies like these are critical for developing a deeper understanding of the evolution of cell signalling. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’.

2017 ◽  
Vol 45 (6) ◽  
pp. 1185-1202 ◽  
Author(s):  
Aonghus J. McCarthy ◽  
Caroline Coleman-Vaughan ◽  
Justin V. McCarthy

Receptor signalling events including those initiated following activation of cytokine and growth factor receptors and the well-characterised death receptors (tumour necrosis factor receptor, type 1, FasR and TRAIL-R1/2) are initiated at the cell surface through the recruitment and formation of intracellular multiprotein signalling complexes that activate divergent signalling pathways. Over the past decade, research studies reveal that many of these receptor-initiated signalling events involve the sequential proteolysis of specific receptors by membrane-bound proteases and the γ-secretase protease complexes. Proteolysis enables the liberation of soluble receptor ectodomains and the generation of intracellular receptor cytoplasmic domain fragments. The combined and sequential enzymatic activity has been defined as regulated intramembrane proteolysis and is now a fundamental signal transduction process involved in the termination or propagation of receptor signalling events. In this review, we discuss emerging evidence for a role of the γ-secretase protease complexes and regulated intramembrane proteolysis in cell- and immune-signalling pathways.


1995 ◽  
Vol 7 (3) ◽  
pp. 195-205 ◽  
Author(s):  
Jean Morisset ◽  
Nadine Douziech ◽  
Grazyna Rydzewska ◽  
Louis Buscail ◽  
Nathalie Rivard

2012 ◽  
Vol 367 (1602) ◽  
pp. 2540-2555 ◽  
Author(s):  
Jing Jin ◽  
Tony Pawson

Phosphorylation sites are formed by protein kinases (‘writers’), frequently exert their effects following recognition by phospho-binding proteins (‘readers’) and are removed by protein phosphatases (‘erasers’). This writer–reader–eraser toolkit allows phosphorylation events to control a broad range of regulatory processes, and has been pivotal in the evolution of new functions required for the development of multi-cellular animals. The proteins that comprise this system of protein kinases, phospho-binding targets and phosphatases are typically modular in organization, in the sense that they are composed of multiple globular domains and smaller peptide motifs with binding or catalytic properties. The linkage of these binding and catalytic modules in new ways through genetic recombination, and the selection of particular domain combinations, has promoted the evolution of novel, biologically useful processes. Conversely, the joining of domains in aberrant combinations can subvert cell signalling and be causative in diseases such as cancer. Major inventions such as phosphotyrosine (pTyr)-mediated signalling that flourished in the first multi-cellular animals and their immediate predecessors resulted from stepwise evolutionary progression. This involved changes in the binding properties of interaction domains such as SH2 and their linkage to new domain types, and alterations in the catalytic specificities of kinases and phosphatases. This review will focus on the modular aspects of signalling networks and the mechanism by which they may have evolved.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 522 ◽  
Author(s):  
Gabriele Riva ◽  
Chiara Cilibrasi ◽  
Riccardo Bazzoni ◽  
Massimiliano Cadamuro ◽  
Caterina Negroni ◽  
...  

Glioblastoma is the most common malignant brain tumour in adults. The failure of current therapies can be ascribed to glioma stem cells (GSCs), which can rapidly repopulate the tumour following the initial treatment. The study of histone deacetylase inhibitors, such as valproic acid (VPA), is becoming an attractive field in cancer research. However, the exact mechanisms underlying its anti-cancer effect remain to be elucidated due to its pleiotropic effects on several cell-signalling pathways. Ingenuity Pathway Analysis (IPA) bioinformatics analysis was performed on genome-wide data regarding GSCs methylome to identify the signalling pathways mainly affected by methylation changes induced by VPA. Real time PCR and luciferase reporter assay were used to better investigate VPA effects on Wnt/β-catenin signalling pathway. VPA effect on GSC proliferation was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and Trypan blue assays. Finally, VPA impact on GSC motility was demonstrated by Boyden chamber assay and further confirmed evaluating the expression levels or localisation, through western blot or immunofluorescence, of Twist1, Snail1, E-Cadherin and N-Cadherin. The bioinformatics analyses performed on GSCs methylome highlighted that Wnt/β-catenin signalling was affected by the methylation changes induced by VPA, which could influence its activation status. In particular, we pointed out a general activation of this pathway after VPA exposure, which was accompanied by an inhibitory potential on GSCs proliferation. Finally, we also proved VPA’s ability to inhibit GSCs invasion through Snail1 and Twist1 downregulation and E-Cadherin relocalisation. VPA treatment may represent a new, interesting therapeutic approach to affect GSC proliferation and motility, but further investigations are certainly needed.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 135 ◽  
Author(s):  
Asfar S Azmi ◽  
Fazlul H Sarkar ◽  
SM Hadi

“Let food be thy medicine and medicine be thy food” was quoted by Hippocrates more than two thousand years ago and since ancient times the health benefits of different natural agents have been exploited. In modern research, the disease preventive benefits of many such natural agents, particularly dietary compounds and their derivatives, has been attributed to their well recognized activity as the regulators of redox state of the cell. Nevertheless, most of these studies have focused on their antioxidant activity. A large body of evidence indicates that a major fraction of these agents can elicit pro-oxidant (radical generating) behavior which has been linked to their anti-cancer effects. This editorial provides an overview of the under-appreciated pro-oxidant activity of natural products, with a special focus on their ability to generate reactive oxygen species in the presence of transition metal ions, and discusses their possible use as cancer chemotherapeutic agents.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wei Zhang ◽  
Mingti Lv ◽  
Yating Shi ◽  
Yonghui Mu ◽  
Zhaoyang Yao ◽  
...  

Background. Huangqi Sijunzi decoction (HQSJZD) is a commonly used conventional Chinese herbal medicine prescription for invigorating Qi, tonifying Yang, and removing dampness. Modern pharmacology and clinical applications of HQSJZD have shown that it has a certain curative effect on Alzheimer’s disease (AD). Methods. The active components and targets of HQSJZD were searched in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The genes corresponding to the targets were retrieved using UniProt and GeneCard database. The herb-compound-target network and protein-protein interaction (PPI) network were constructed by Cytoscape. The core targets of HQSJZD were analysed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The main active compounds of HQSJZD were docked with acetylcholinesterase (AChE). In vitro experiments were conducted to detect the inhibitory and neuroprotective effects of AChE. Results. Compound-target network mainly contained 132 compounds and 255 corresponding targets. The main compounds contained quercetin, kaempferol, formononetin, isorhamnetin, hederagenin, and calycosin. Key targets contained AChE, PTGS2, PPARG, IL-1B, GSK3B, etc. There were 1708 GO items in GO enrichment analysis and 310 signalling pathways in KEGG, mainly including the cAMP signalling pathway, the vascular endothelial growth factor (VEGF) signalling pathway, serotonergic synapses, the calcium signalling pathway, type II diabetes mellitus, arginine and proline metabolism, and the longevity regulating pathway. Molecular docking showed that hederagenin and formononetin were the top 2 compounds of HQSJZD, which had a high affinity with AChE. And formononetin has a good neuroprotective effect, which can improve the oxidative damage of nerve cells. Conclusion. HQSJZD was found to have the potential to treat AD by targeting multiple AD-related targets. Formononetin and hederagenin in HQSJZD may regulate multiple signalling pathways through AChE, which might play a therapeutic role in AD.


Author(s):  
Paulina Dziamałek-Macioszczyk ◽  
Joanna Haraźna ◽  
Tomasz Stompór

Ubiquitin-specific peptidase 18 (USP18) is a multifunctional protein and its roles are still being investigated. This enzyme removes ubiquitin-like molecules from their substrates and the only known interferon-stimulated gene 15 (ISG15) specific protease. Apart from its enzymatic function, it also inhibits interferon type I and III signalling pathways. USP18 is known to regulate multiple processes, such as: cell cycle, cell signalling and response to viral and bacterial infections. Moreover, it contributes to the development of several autoimmune diseases and carcinogenesis, and recently was described as a cardiac remodelling inhibitor. This review summarizes the current knowledge on USP18 functions, highlighting its contribution to the development of heart failure, given the fact that this disease’s etiology is now considered to be inflammatory in nature.


Sign in / Sign up

Export Citation Format

Share Document