scholarly journals A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates

Microbiology ◽  
2014 ◽  
Vol 160 (7) ◽  
pp. 1533-1544 ◽  
Author(s):  
Mi Na Rhie ◽  
Hyo Eun Yoon ◽  
Hye Yun Oh ◽  
Sandra Zedler ◽  
Gottfried Unden ◽  
...  

Actinobacillus succinogenes, which is known to produce large amounts of succinate during fermentation of hexoses, was able to grow on C4-dicarboxylates such as fumarate under aerobic and anaerobic conditions. Anaerobic growth on fumarate was stimulated by glycerol and the major product was succinate, indicating the involvement of fumarate respiration similar to succinate production from glucose. The aerobic growth on C4-dicarboxylates and the transport proteins involved were studied. Fumarate was oxidized to acetate. The genome of A. succinogenes encodes six proteins with similarity to secondary C4-dicarboxylate transporters, including transporters of the Dcu (C4-dicarboxylate uptake), DcuC (C4-dicarboxylate uptake C), DASS (divalent anion : sodium symporter) and TDT (tellurite resistance dicarboxylate transporter) family. From the cloned genes, Asuc_0304 of the DASS family protein was able to restore aerobic growth on C4-dicarboxylates in a C4-dicarboxylate-transport-negative Escherichia coli strain. The strain regained succinate or fumarate uptake, which was dependent on the electrochemical proton potential and the presence of Na+. The transport had an optimum pH ~7, indicating transport of the dianionic C4-dicarboxylates. Transport competition experiments suggested substrate specificity for fumarate and succinate. The transport characteristics for C4-dicarboxylate uptake by cells of aerobically grown A. succinogenes were similar to those of Asuc_0304 expressed in E. coli, suggesting that Asuc_0304 has an important role in aerobic fumarate uptake in A. succinogenes. Asuc_0304 has sequence similarity to bacterial Na+-dicarboxylate cotransporters and contains the carboxylate-binding signature. Asuc_0304 was named SdcA (sodium-coupled C4-dicarboxylate transporter from A . succinogenes).

2000 ◽  
Vol 182 (17) ◽  
pp. 4783-4788 ◽  
Author(s):  
Claus Rix Melchiorsen ◽  
Kirsten Væver Jokumsen ◽  
John Villadsen ◽  
Mads G. Johnsen ◽  
Hans Israelsen ◽  
...  

ABSTRACT The enzyme pyruvate formate-lyase (PFL) from Lactococcus lactis was produced in Escherichia coli and purified to obtain anti-PFL antibodies that were shown to be specific forL. lactis PFL. It was demonstrated that activated L. lactis PFL was sensitive to oxygen, as in E. coli, resulting in the cleavage of the PFL polypeptide. The PFL protein level and its in vivo activity and regulation were shown by Western blotting, enzyme-linked immunosorbent assay, and metabolite measurement to be dependent on the growth conditions. The PFL level during anaerobic growth on the slowly fermentable sugar galactose was higher than that on glucose. This shows that variation in the PFL protein level may play an important role in the regulation of metabolic shift from homolactic to mixed-acid product formation, observed during growth on glucose and galactose, respectively. During anaerobic growth in defined medium, complete activation of PFL was observed. Strikingly, although no formate was produced during aerobic growth of L. lactis, PFL protein was indeed detected under these conditions, in which the enzyme is dispensable due to the irreversible inactivation of PFL by oxygen. In contrast, no oxygenolytic cleavage was detected during aerobic growth in complex medium. This observation may be the result of either an effective PFL deactivase activity or the lack of PFL activation. In E. coli, the PFL deactivase activity resides in the multifunctional alcohol dehydrogenase ADHE. It was shown that inL. lactis, ADHE does not participate in the protection of PFL against oxygen under the conditions analyzed. Our results provide evidence for major differences in the mechanisms of posttranslational regulation of PFL activity in E. coli and L. lactis.


2004 ◽  
Vol 70 (2) ◽  
pp. 1238-1241 ◽  
Author(s):  
Pil Kim ◽  
Maris Laivenieks ◽  
Claire Vieille ◽  
J. Gregory Zeikus

ABSTRACT Succinate fermentation was investigated in Escherichia coli strains overexpressing Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PEPCK). In E. coli K-12, PEPCK overexpression had no effect on succinate fermentation. In contrast, in the phosphoenolpyruvate carboxylase mutant E. coli strain K-12 ppc::kan, PEPCK overexpression increased succinate production 6.5-fold.


2008 ◽  
Vol 74 (17) ◽  
pp. 5290-5296 ◽  
Author(s):  
Haruhiko Teramoto ◽  
Tomokazu Shirai ◽  
Masayuki Inui ◽  
Hideaki Yukawa

ABSTRACT The Corynebacterium glutamicum R genome contains a total of eight genes encoding proteins with sequence similarity to C4-dicarboxylate transporters identified from other bacteria. Three of the genes encode proteins within the dicarboxylate/amino acid:cation symporter (DAACS) family, another three encode proteins within the tripartite ATP-independent periplasmic transporter family, and two encode proteins within the divalent anion:Na+ symporter (DASS) family. We observed that a mutant strain deficient in one of these genes, designated dcsT, of the DASS family did not aerobically grow on the C4 dicarboxylates succinate, fumarate, and malate as the sole carbon sources. Mutant strains deficient in each of the other seven genes grew as well as the wild-type strain under the same conditions, although one of these genes is a homologue of dctA of the DAACS family, involved in aerobic growth on C4 dicarboxylates in various bacteria. The utilization of C4 dicarboxylates was markedly enhanced by overexpression of the dcsT gene. We confirmed that the uptake of [13C]labeled succinate observed for the wild-type cells was hardly detected in the dcsT-deficient mutant but was markedly enhanced in a dcsT-overexpressing strain. These results suggested that in C. glutamicum, the uptake of C4 dicarboxylates for aerobic growth was mainly mediated by the DASS transporter encoded by dcsT. The expression level of the dcsT gene transiently increased in the early exponential phase during growth on nutrient-rich medium. This expression was enhanced by the addition of succinate in the mid-exponential phase and was repressed by the addition of glucose in the early exponential phase.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


Author(s):  
Angélique Buton ◽  
Louis-Marie Bobay

Abstract Homologous recombination is a key pathway found in nearly all bacterial taxa. The recombination complex allows bacteria to repair DNA double strand breaks but also promotes adaption through the exchange of DNA between cells. In Proteobacteria, this process is mediated by the RecBCD complex, which relies on the recognition of a DNA motif named Chi to initiate recombination. The Chi motif has been characterized in Escherichia coli and analogous sequences have been found in several other species from diverse families, suggesting that this mode of action is widespread across bacteria. However, the sequences of Chi-like motifs are known for only five bacterial species: E. coli, Haemophilus influenzae, Bacillus subtilis, Lactococcus lactis and Staphylococcus aureus. In this study we detected putative Chi motifs in a large dataset of Proteobacteria and we identified four additional motifs sharing high sequence similarity and similar properties to the Chi motif of E. coli in 85 species of Proteobacteria. Most Chi motifs were detected in Enterobacteriaceae and this motif appears well conserved in this family. However, we did not detect Chi motifs for the majority of Proteobacteria, suggesting that different motifs are used in these species. Altogether these results substantially expand our knowledge on the evolution of Chi motifs and on the recombination process in bacteria.


1995 ◽  
Vol 15 (12) ◽  
pp. 6875-6883 ◽  
Author(s):  
D J Katzmann ◽  
T C Hallstrom ◽  
M Voet ◽  
W Wysock ◽  
J Golin ◽  
...  

Semidominant mutations in the PDR1 or PDR3 gene lead to elevated resistance to cycloheximide and oligomycin. PDR1 and PDR3 have been demonstrated to encode zinc cluster transcription factors. Cycloheximide resistance mediated by PDR1 and PDR3 requires the presence of the PDR5 membrane transporter-encoding gene. However, PDR5 is not required for oligomycin resistance. Here, we isolated a gene that is necessary for PDR1- and PDR3-mediated oligomycin resistance. This locus, designated YOR1, causes a dramatic elevation in oligomycin resistance when present in multiple copies. A yor1 strain exhibits oligomycin hypersensitivity relative to an isogenic wild-type strain. In addition, loss of the YOR1 gene blocks the elevation in oligomycin resistance normally conferred by mutant forms of PDR1 or PDR3. The YOR1 gene product is predicted to be a member of the ATP-binding cassette transporter family of membrane proteins. Computer alignment indicates that Yor1p shows striking sequence similarity with multidrug resistance-associated protein, Saccharomyces cerevisiae Ycf1p, and the cystic fibrosis transmembrane conductance regulator. Use of a YOR1-lacZ fusion gene indicates that YOR1 expression is responsive to PDR1 and PDR3. While PDR5 expression is strictly dependent on the presence of PDR1 or PDR3, control of YOR1 expression has a significant PDR1/PDR3-independent component. Taken together, these data indicate that YOR1 provides the link between transcriptional regulation by PDR1 and PDR3 and oligomycin resistance of yeast cells.


In the present communications the effect of oxygen upon the fermentation of glucose and upon the growth of the bacteria, in so far as this affects fermentation, is considered. To this end the organisms have been grown both aerobically and anaerobically, and subsequently made to ferment glucose, both aerobically and anaerobically, with the object of comparing the products of decomposition in the two cases. There are clearly two problems : firstly, the effect of exposure to oxygen during growth upon the subsequent fermentation, whether aerobic or anaerobic, and, secondly, the effect of oxygen admitted during the fermentation. The first question relates to the part played by oxygen in the formation of enzymes, the second to the part played by oxygen in their action on carbohydrates. The first question is considered, though in but a preliminary way, in Section A, the second, more fully, in Section B. Section A. Object of the Experiments . Two results were aimed at in these experiments. Firstly, to compare the products of fermentation of glucose anaerobically, after anaerobic growth, with the products of fermentation anaerobically after previous growth aerobically. And, secondly, to obtain information as to the effect of introducing oxygen during the fermentation itself. This latter consideration, however, though brought to notice by these experiments, is considered only incidentally here because it forms the subject of Section B. In the present section we wish to direct attention particularly to those differences which exist between the fermentation after anaerobic and aerobic growth, not upon the effect of aeration during the fermentation. To point out the difference which previous growth aerobically or anaerobically has made, several analyses from previous experiments are included in Table IV side by side with the completely anaerobic experiments of Tables I, II, and III.


1984 ◽  
Vol 30 (6) ◽  
pp. 837-840 ◽  
Author(s):  
Lawrence I. Hochstein ◽  
Geraldine A. Tomlinson

A synthetic medium, consisting of inorganic salts and any of a number of carbon sources, supported the aerobic growth of Paracoccus halodenitrificans when supplemented with thiamine. The same medium plus an appropriate nitrogenous oxide supported anaerobic growth when additionally supplemented with methionine. The observation that vitamin B12 or betaine replaced methionine suggested that P. halodenitrificans had a defect in the cobalamin-dependent pathway for methionine biosynthesis, as well as the inability to synthesize betaine when growing anaerobically.


Holzforschung ◽  
2009 ◽  
Vol 63 (1) ◽  
Author(s):  
Fang-Hua Chu ◽  
Pei-Min Kuo ◽  
Yu-Rong Chen ◽  
Sheng-Yang Wang

AbstractAnalyzing the gene sequences of terpene synthase (TPS) may contribute to a better understanding of terpenes biosynthesis and evolution of phylogenetic taxonomy.Chamaecyparis formosensisis an endemic and precious conifer of Taiwan. To understand the biosynthesis mechanism of terpenes in this tree, a full length of putative mono-TPS, named asCf-Pin(GeneBank accession no. EU099434), was obtained by PCR method and RACE extension. TheCf-Pinhas an 1887-bp open reading frame and encodes 628 amino acids. To identify the function ofCf-Pin,the recombinant protein fromEscherichia coliwas incubated with geranyl diphosphate, produced one major product, the structure of which was elucidated. GC/MS analysis and matching of retention time and mass spectrum with authentic standards revealed that this product isα-pinene. This is the first report of cloning of a mono-TPS and functionally expressed inE. coliand which could be identified asα-pinene synthase from a Cupressaceae conifer.


2004 ◽  
Vol 186 (1) ◽  
pp. 192-199 ◽  
Author(s):  
Elizabeth Yohannes ◽  
D. Michael Barnhart ◽  
Joan L. Slonczewski

ABSTRACT During aerobic growth of Escherichia coli, expression of catabolic enzymes and envelope and periplasmic proteins is regulated by pH. Additional modes of pH regulation were revealed under anaerobiosis. E. coli K-12 strain W3110 was cultured anaerobically in broth medium buffered at pH 5.5 or 8.5 for protein identification on proteomic two-dimensional gels. A total of 32 proteins from anaerobic cultures show pH-dependent expression, and only four of these proteins (DsbA, TnaA, GatY, and HdeA) showed pH regulation in aerated cultures. The levels of 19 proteins were elevated at the high pH; these proteins included metabolic enzymes (DhaKLM, GapA, TnaA, HisC, and HisD), periplasmic proteins (ProX, OppA, DegQ, MalB, and MglB), and stress proteins (DsbA, Tig, and UspA). High-pH induction of the glycolytic enzymes DhaKLM and GapA suggested that there was increased fermentation to acids, which helped neutralize alkalinity. Reporter lac fusion constructs showed base induction of sdaA encoding serine deaminase under anaerobiosis; in addition, the glutamate decarboxylase genes gadA and gadB were induced at the high pH anaerobically but not with aeration. This result is consistent with the hypothesis that there is a connection between the gad system and GabT metabolism of 4-aminobutanoate. On the other hand, 13 other proteins were induced by acid; these proteins included metabolic enzymes (GatY and AckA), periplasmic proteins (TolC, HdeA, and OmpA), and redox enzymes (GuaB, HmpA, and Lpd). The acid induction of NikA (nickel transporter) is of interest because E. coli requires nickel for anaerobic fermentation. The position of the NikA spot coincided with the position of a small unidentified spot whose induction in aerobic cultures was reported previously; thus, NikA appeared to be induced slightly by acid during aeration but showed stronger induction under anaerobic conditions. Overall, anaerobic growth revealed several more pH-regulated proteins; in particular, anaerobiosis enabled induction of several additional catabolic enzymes and sugar transporters at the high pH, at which production of fermentation acids may be advantageous for the cell.


Sign in / Sign up

Export Citation Format

Share Document