The Dps-like protein Fri of Listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells

Microbiology ◽  
2005 ◽  
Vol 151 (3) ◽  
pp. 925-933 ◽  
Author(s):  
Katja N. Olsen ◽  
Marianne H. Larsen ◽  
Cormac G. M. Gahan ◽  
Birgitte Kallipolitis ◽  
Xenia A. Wolf ◽  
...  

Members of the ferritin-like Dps protein family are found in a number of bacterial species, where they demonstrate the potential to bind iron, and have been implicated in tolerance to oxidative stress. In this study of the food-borne pathogen Listeria monocytogenes, the fri gene encoding a Dps homologue was deleted, and, compared to wild-type cells, it was found that the resulting mutant was less resistant to hydrogen peroxide, and demonstrated reduced survival following long-term (7–11 days) incubation in laboratory media. In view of this, it is shown that fri gene expression is controlled by the hydrogen peroxide regulator PerR, as well as the general stress sigma factor σ B. When fri mutant cells were transferred to iron-limiting conditions, growth was retarded relative to wild-type cells, indicating that Fri may be required for iron storage. This notion is supported by the observation that the L. monocytogenes genome appears not to encode other ferritin-like proteins. Given the role of Fri in resistance to oxidative stress, and growth under iron-limiting conditions, the ability of the fri mutant to infect mice was examined. When injected by the intraperitoneal route, the fri mutant demonstrated a reduced capacity to proliferate in the organs of infected mice relative to the wild-type, whereas when the bacteria were supplied intravenously this effect was mitigated. In addition, the mutant was impaired in its ability to survive and grow in J774.A1 mouse macrophage cells. Thus, the data suggest that Fri contributes to the ability of L. monocytogenes to survive in environments where oxidative stress and low iron availability may impede bacterial proliferation.

2003 ◽  
Vol 185 (12) ◽  
pp. 3654-3660 ◽  
Author(s):  
Alexander Perelman ◽  
Avraham Uzan ◽  
Dalia Hacohen ◽  
Rakefet Schwarz

ABSTRACT This study focuses on the mechanisms for hydrogen peroxide detoxification in Synechococcus sp. strain PCC 7942. To gain better understanding of the role of different routes of hydrogen peroxide detoxification, we inactivated tplA (thioredoxin-peroxidase-like), which we recently identified. In addition, we inactivated the gene encoding catalase-peroxidase and examined the ability to detoxify H2O2 and to survive oxidative stress in both of the single mutants and in the double mutant. Surprisingly, we observed that the double mutant survived H2O2 concentrations that the single catalase-peroxidase mutant could not tolerate. This phenotype correlated with an increased ability of the double mutant to detoxify externally added H2O2 compared to the catalase-peroxidase mutant. Therefore, our studies suggested the existence of a hydrogen peroxide detoxification activity in addition to catalase-peroxidase and thioredoxin-peroxidase. The rate of detoxification of externally added H2O2 was similar in the wild-type and the TplA mutant cells, suggesting that, under these conditions, catalase-peroxidase activity was essential for this process and TplA was dispensable. However, during excessive radiation, conditions under which the cell might experience oxidative stress, TplA appears to be essential for growth, and cells lacking it cannot compete with the wild-type strain. Overall, these studies suggested different physiological roles for various cellular hydrogen peroxide detoxification mechanisms in Synechococcus sp. strain PCC 7942.


2016 ◽  
Vol 82 (15) ◽  
pp. 4584-4591 ◽  
Author(s):  
Marcia Boura ◽  
Ciara Keating ◽  
Kevin Royet ◽  
Ranju Paudyal ◽  
Beth O'Donoghue ◽  
...  

ABSTRACTSigB is the main stress gene regulator inListeria monocytogenesaffecting the expression of more than 150 genes and thus contributing to multiple-stress resistance. Despite its clear role in most stresses, its role in oxidative stress is uncertain, as results accompanying the loss ofsigBrange from hyperresistance to hypersensitivity. Previously, these differences have been attributed to strain variation. In this study, we show conclusively that unlike for all other stresses, loss ofsigBresults in hyperresistance to H2O2(more than 8 log CFU ml−1compared to the wild type) in aerobically grown stationary-phase cultures ofL. monocytogenesstrains 10403S and EGD-e. Furthermore, growth at 30°C resulted in higher resistance to oxidative stress than that at 37°C. Oxidative stress resistance seemed to be higher with higher levels of oxygen. Under anaerobic conditions, the loss of SigB in 10403S did not affect survival against H2O2, while in EGD-e, it resulted in a sensitive phenotype. During exponential phase, minor differences occurred, and this result was expected due to the absence ofsigBtranscription. Catalase tests were performed under all conditions, and stronger catalase results corresponded well with a higher survival rate, underpinning the important role of catalase in this phenotype. Furthermore, we assessed the catalase activity in protein lysates, which corresponded with the catalase tests and survival. In addition, reverse transcription-PCR (RT-PCR) showed no differences in transcription between the wild type and the ΔsigBmutant in various oxidative stress genes. Further investigation of the molecular mechanism behind this phenotype and its possible consequences for the overall phenotype ofL. monocytogenesare under way.IMPORTANCESigB is the most important stress gene regulator inL. monocytogenesand other Gram-positive bacteria. Its increased expression during stationary phase results in resistance to multiple stresses. However, despite its important role in general stress resistance, its expression is detrimental for the cell in the presence of oxidative stress, as it promotes hypersensitivity against hydrogen peroxide. This peculiar phenotype is an important element of the physiology ofL. monocytogenes, and it might help us explain the behavior of this organism in environments where oxidative stress is present.


Parasitology ◽  
2017 ◽  
Vol 144 (11) ◽  
pp. 1498-1510 ◽  
Author(s):  
ANNA CLÁUDIA GUIMARÃES FREIRE ◽  
CERES LUCIANA ALVES ◽  
GRAZIELLE RIBEIRO GOES ◽  
BRUNO CARVALHO RESENDE ◽  
NILMAR SILVIO MORETTI ◽  
...  

SUMMARYTrypanosoma cruziis exposed to oxidative stresses during its life cycle, and amongst the strategies employed by this parasite to deal with these situations sits a peculiar trypanothione-dependent antioxidant system. Remarkably,T. cruzi’s antioxidant repertoire does not include catalase. In an attempt to shed light on what are the reasons by which this parasite lacks this enzyme, aT. cruzicell line stably expressing catalase showed an increased resistance to hydrogen peroxide (H2O2) when compared with wild-type cells. Interestingly, preconditioning carried out with low concentrations of H2O2led untransfected parasites to be as much resistant to this oxidant as cells expressing catalase, but did not induce the same level of increased resistance in the latter ones. Also, presence of catalase decreased trypanothione reductase and increased superoxide dismutase levels inT. cruzi, resulting in higher levels of residual H2O2after challenge with this oxidant. Although expression of catalase contributed to elevated proliferation rates ofT. cruziinRhodnius prolixus, it failed to induce a significant increase of parasite virulence in mice. Altogether, these results indicate that the absence of a gene encoding catalase inT. cruzihas played an important role in allowing this parasite to develop a shrill capacity to sense and overcome oxidative stress.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Masaaki Onda ◽  
Katsuhiro Hanada ◽  
Hirokazu Kawachi ◽  
Hideo Ikeda

Abstract DNA damage by oxidative stress is one of the causes of mutagenesis. However, whether or not DNA damage induces illegitimate recombination has not been determined. To study the effect of oxidative stress on illegitimate recombination, we examined the frequency of λbio transducing phage in the presence of hydrogen peroxide and found that this reagent enhances illegitimate recombination. To clarify the types of illegitimate recombination, we examined the effect of mutations in mutM and related genes on the process. The frequency of λbio transducing phage was 5- to 12-fold higher in the mutM mutant than in the wild type, while the frequency in the mutY and mutT mutants was comparable to that of the wild type. Because 7,8-dihydro-8-oxoguanine (8-oxoG) and formamido pyrimidine (Fapy) lesions can be removed from DNA by MutM protein, these lesions are thought to induce illegitimate recombination. Analysis of recombination junctions showed that the recombination at Hotspot I accounts for 22 or 4% of total λbio transducing phages in the wild type or in the mutM mutant, respectively. The preferential increase of recombination at nonhotspot sites with hydrogen peroxide in the mutM mutant was discussed on the basis of a new model, in which 8-oxoG and/or Fapy residues may introduce double-strand breaks into DNA.


2003 ◽  
Vol 185 (23) ◽  
pp. 6801-6808 ◽  
Author(s):  
Shannon A. Carroll ◽  
Torsten Hain ◽  
Ulrike Technow ◽  
Ayub Darji ◽  
Philippos Pashalidis ◽  
...  

ABSTRACT A novel cell wall hydrolase encoded by the murA gene of Listeria monocytogenes is reported here. Mature MurA is a 66-kDa cell surface protein that is recognized by the well-characterized L. monocytogenes-specific monoclonal antibody EM-7G1. MurA displays two characteristic features: (i) an N-terminal domain with homology to muramidases from several gram-positive bacterial species and (ii) four copies of a cell wall-anchoring LysM repeat motif present within its C-terminal domain. Purified recombinant MurA produced in Escherichia coli was confirmed to be an authentic cell wall hydrolase with lytic properties toward cell wall preparations of Micrococcus lysodeikticus. An isogenic mutant with a deletion of murA that lacked the 66-kDa cell wall hydrolase grew as long chains during exponential growth. Complementation of the mutant strain by chromosomal reintegration of the wild-type gene restored expression of this murein hydrolase activity and cell separation levels to those of the wild-type strain. Studies reported herein suggest that the MurA protein is involved in generalized autolysis of L. monocytogenes.


2006 ◽  
Vol 188 (21) ◽  
pp. 7572-7580 ◽  
Author(s):  
Miey Park ◽  
Seong Tae Yun ◽  
Sue-Yun Hwang ◽  
Choong-Ill Chun ◽  
Tae In Ahn

ABSTRACT To survive in host cells, intracellular pathogens or symbiotic bacteria require protective mechanisms to overcome the oxidative stress generated by phagocytic activities of the host. By genomic library tagging, we cloned a dps (stands for DNA-binding protein from starved cells) gene of the symbiotic “Candidatus Legionella jeonii” organism (called the X bacterium) (dps X) that grows in Amoeba proteus. The gene encodes a 17-kDa protein (pI 5.19) with 91% homology to Dps and DNA-binding ferritin-like proteins of other organisms. The cloned gene complemented the dps mutant of Escherichia coli and conferred resistance to hydrogen peroxide. DpsX proteins purified from E. coli transformed with the dps X gene were in oligomeric form, formed a complex with pBlueskript SKII DNA, and protected the DNA from DNase I digestion and H2O2-mediated damage. The expression of the dps X gene in “Candidatus Legionella jeonii” was enhanced when the host amoeba was treated with 2 mM H2O2 and by phagocytic activities of the host cell. These results suggested that the Dps protein has a function protective of the bacterial DNA and that its gene expression responds to oxidative stress generated by phagocytic activities of the host cell. With regard to the fact that invasion of Legionella sp. into respiratory phagocytic cells causes pneumonia in mammals, further characterization of dps X expression in the Legionella sp. that multiplies in a protozoan host in the natural environment may provide valuable information toward understanding the protective mechanisms of intracellular pathogens.


2019 ◽  
Vol 201 (6) ◽  
Author(s):  
Qingqing Gao ◽  
Le Xia ◽  
Xiaobo Wang ◽  
Zhengqin Ye ◽  
Jinbiao Liu ◽  
...  

ABSTRACTStrains of avian pathogenicEscherichia coli(APEC), the common pathogen of avian colibacillosis, encounter reactive oxygen species (ROS) during the infection process. Superoxide dismutases (SODs), acting as antioxidant factors, can protect against ROS-mediated host defenses. Our previous reports showed that thesodAgene (encoding a Mn-cofactor-containing SOD [MnSOD]) is highly expressed during the septicemic infection process of APEC.sodAhas been proven to be a virulence factor of certain pathogens, but its role in the pathogenicity of APEC has not been fully identified. In this study, we deleted thesodAgene from the virulent APEC O2 strain E058 and examined thein vitroandin vivophenotypes of the mutant. ThesodAmutant was more sensitive to hydrogen peroxide in terms of both its growth and viability than was the wild type. The ability to form a biofilm was weakened in thesodAmutant. ThesodAmutant was significantly more easily phagocytosed by chicken macrophages than was the wild-type strain. Chicken infection assays revealed significantly attenuated virulence of thesodAmutant compared with the wild type at 24 h postinfection. The virulence phenotype was restored by complementation of thesodAgene. Quantitative real-time reverse transcription-PCR revealed that the inactivation ofsodAreduced the expression of oxidative stress response geneskatE,perR, andosmCbut did not affect the expression ofsodBandsodC. Taken together, our studies indicate that SodA is important for oxidative resistance and virulence of APEC E058.IMPORTANCEAvian colibacillosis, caused by strains of avian pathogenicEscherichia coli, is a major bacterial disease of severe economic significance to the poultry industry worldwide. The virulence mechanisms of APEC are not completely understood. This study investigated the influence of an antioxidant protein, SodA, on the phenotype and pathogenicity of APEC O2 strain E058. This is the first report demonstrating that SodA plays an important role in protecting a specific APEC strain against hydrogen peroxide-induced oxidative stress and contributes to the virulence of this pathotype strain. Identification of this virulence factor will enhance our knowledge of APEC pathogenic mechanisms, which is crucial for designing successful strategies against associated infections and transmission.


2010 ◽  
Vol 76 (16) ◽  
pp. 5577-5584 ◽  
Author(s):  
Suleyman Yildirim ◽  
Driss Elhanafi ◽  
Wen Lin ◽  
Anthony D. Hitchins ◽  
Robin M. Siletzky ◽  
...  

ABSTRACTListeria monocytogenesis a food-borne pathogen with a clonal population structure and apparently limited gene flow between strains of different lineages. Strains of epidemic clone I (ECI) have been responsible for numerous outbreaks and invariably have DNA that is resistant to digestion by Sau3AI, suggesting methylation of cytosine at GATC sites. A putative restriction-modification (RM) gene cassette has been identified in the genome of the ECI strain F2365 and all other tested ECI strains but is absent from other strains of the same serotype (4b). Homologous RM cassettes have not been reported amongL. monocytogenesisolates of other serotypes. Furthermore, conclusive evidence for the involvement of this RM cassette in the Sau3AI resistance phenotype of ECI strains has been lacking. In this study, we describe a highly conserved RM cassette in certain strains of serotypes 1/2a and 4a that have Sau3AI-resistant DNA. In these strains the RM cassette was in the same genomic location as in the ECI reference strain F2365. The cassette included a gene encoding a putative recombinase, suggesting insertion via site-specific recombination. Deletion of the RM cassette in the ECI strain F2365 and the serotype 1/2a strain A7 rendered the DNA of both strains susceptible to Sau3AI digestion, providing conclusive evidence that the cassette includes a gene required for methylation of cytosine at GATC sites in both strains. The findings suggest that, in addition to its presence in ECI strains, this RM cassette and the accompanying genomic DNA methylation is also encountered among selected strains of other lineages.


2010 ◽  
Vol 7 (3) ◽  
pp. 1008-1012
Author(s):  
Farhan Zameer ◽  
Shubha Gopal

The present study aimed to understand the survival strategies adapted byListeria monocytogenesto combat oxidative stress in planktonic and biofilm cells with response to hydrogen peroxide (H2O2). The sensitivity ofL. monocytogenesto H2O2(oxidative stress) was found to vary in growth cycle. Early log phase cells were found to be sensitive to 100 μM H2O2when compared to stationary phase. Biofilm population was found to be resistant to the oxidative stress induced at 4% of H2O2when compared to their planktonic counterpart at 3.5%. This adaptive behavior allows the pathogen to overcome food preservation and safety barriers, which pose a potential risk to human health. The overall results suggest that, H2O2at a concentration of 6% could be used as a potent sanitizer for the elimination of listerial biofilms.


2004 ◽  
Vol 70 (8) ◽  
pp. 4702-4710 ◽  
Author(s):  
Jose M. Bruno-Bárcena ◽  
Jason M. Andrus ◽  
Stephen L. Libby ◽  
Todd R. Klaenhammer ◽  
Hosni M. Hassan

ABSTRACT In living organisms, exposure to oxygen provokes oxidative stress. A widespread mechanism for protection against oxidative stress is provided by the antioxidant enzymes: superoxide dismutases (SODs) and hydroperoxidases. Generally, these enzymes are not present in Lactobacillus spp. In this study, we examined the potential advantages of providing a heterologous SOD to some of the intestinal lactobacilli. Thus, the gene encoding the manganese-containing SOD (sodA) was cloned from Streptococcus thermophilus AO54 and expressed in four intestinal lactobacilli. A 1.2-kb PCR product containing the sodA gene was cloned into the shuttle vector pTRK563, to yield pSodA, which was functionally expressed and complemented an Escherichia coli strain deficient in Mn and FeSODs. The plasmid, pSodA, was subsequently introduced and expressed in Lactobacillus gasseri NCK334, Lactobacillus johnsonii NCK89, Lactobacillus acidophilus NCK56, and Lactobacillus reuteri NCK932. Molecular and biochemical analyses confirmed the presence of the gene (sodA) and the expression of an active gene product (MnSOD) in these strains of lactobacilli. The specific activities of MnSOD were 6.7, 3.8, 5.8, and 60.7 U/mg of protein for L. gasseri, L. johnsonii, L. acidophilus, and L. reuteri, respectively. The expression of S. thermophilus MnSOD in L. gasseri and L. acidophilus provided protection against hydrogen peroxide stress. The data show that MnSOD protects cells against hydrogen peroxide by removing O2 ·− and preventing the redox cycling of iron. To our best knowledge, this is the first report of a sodA from S. thermophilus being expressed in other lactic acid bacteria.


Sign in / Sign up

Export Citation Format

Share Document