scholarly journals Non-structural protein P6 encoded by rice black-streaked dwarf virus is recruited to viral inclusion bodies by binding to the viroplasm matrix protein P9-1

2013 ◽  
Vol 94 (8) ◽  
pp. 1908-1916 ◽  
Author(s):  
Liying Sun ◽  
Li Xie ◽  
Ida Bagus Andika ◽  
Zilong Tan ◽  
Jianping Chen

Like other members of the family Reoviridae, rice black-streaked dwarf virus (RBSDV, genus Fijivirus) is thought to replicate and assemble within cytoplasmic viral inclusion bodies, commonly called viroplasms. RBSDV P9-1 is the key protein for the formation of viroplasms, but little is known about the other proteins of the viroplasm or the molecular interactions amongst its components. RBSDV non-structural proteins were screened for their association with P9-1 using a co-immunoprecipitation assay. Only P6 was found to directly interact with P9-1, an interaction that was confirmed by bimolecular fluorescence complementation assay in Spodoptera frugiperda (Sf9) cells. Immunoelectron microscopy showed that P6 and P9-1 co-localized in electron-dense inclusion bodies, indicating that P6 is a constituent of the viroplasm. In addition, non-structural protein P5 also localized to viroplasms and interacted with P6. In Sf9 cells, P6 was diffusely distributed throughout the cytoplasm when expressed alone, but localized to inclusions when co-expressed with P9-1, suggesting that P6 is recruited to viral inclusion bodies by binding to P9-1. P5 localized to the inclusions formed by P9-1 when co-expressed with P6 but did not when P6 was absent, suggesting that P5 is recruited to viroplasms by binding to P6. This study provides a model by which viral non-structural proteins are recruited to RBSDV viroplasms.

Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1387
Author(s):  
Mingjun Li ◽  
Xi Sun ◽  
Dianping Di ◽  
Aihong Zhang ◽  
Ling Qing ◽  
...  

Rice black streaked dwarf virus (RBSDV) is an important agent causing maize rough dwarf disease, whereas the host factors responding to RBSDV infection are poorly understood. To uncover the molecular interactions between RBSDV and maize, a yeast two-hybrid screen of a maize cDNA library was carried out using the viral P8 protein as a bait. ZmAKINβγ-1 and ZmAKINβγ-2 (βγ subunit of Arabidopsis SNF1 kinase homolog in maize) possessing high sequence similarities (encoded by two gene copies) were identified as interaction partners. Their interactions with P8 were confirmed in both Nicotiana benthamiana cells and maize protoplasts by bimolecular fluorescence complementation assay. The accumulation levels of ZmAKINβγ mRNAs were upregulated at the stage of the viral symptoms beginning to appear and then downregulated. ZmAKINβγs are putative regulatory subunits of the SnRK1 complex, a core regulator for energy homeostasis. Knockdown of ZmAKINβγs in maize regulated the expression levels of the genes involved in sugar synthesis or degradation, and also the contents of both glucose and sucrose. Importantly, downregulation of ZmAKINβγs expressions facilitated the accumulation of RBSDV in maize. These results implicate a role of ZmAKINβγs in the regulation of primary carbohydrate metabolism, and in the defense against RBSDV infection.


2000 ◽  
Vol 81 (8) ◽  
pp. 1961-1965 ◽  
Author(s):  
Nigel J. Horscroft ◽  
Polly Roy

The bluetongue virus ssRNA-binding protein, NS2, is a phosphoprotein that forms viral inclusion bodies in infected cells. Recombinant NS2 was expressed in the baculovirus expression system and purified to homogeneity from insect cells. Purified NS2 bound nucleosides. Further investigation revealed that the protein bound ATP and GTP and could hydrolyse both nucleosides to their corresponding NMPs, with a higher efficiency for the hydrolysis of ATP. The increased efficiency of hydrolysis of ATP correlated with a higher binding affinity of NS2 for ATP than GTP. Ca2+, Mg2+ and Mn2+ were able to function as the required divalent cation in the reactions. The phosphohydrolase activity was not sensitive to ouabain, an inhibitor of cellular ATPases, suggesting that this activity was not the result of a cellular contaminant.


2011 ◽  
Vol 92 (9) ◽  
pp. 2214-2221 ◽  
Author(s):  
Fusamichi Akita ◽  
Naoyuki Miyazaki ◽  
Hiroyuki Hibino ◽  
Takumi Shimizu ◽  
Akifumi Higashiura ◽  
...  

The non-structural Pns9 protein of rice gall dwarf virus (RGDV) accumulates in viroplasm inclusions, which are structures that appear to play an important role in viral morphogenesis and are commonly found in host cells infected by viruses in the family Reoviridae. Immunofluorescence and immunoelectron microscopy of RGDV-infected vector cells in monolayers, using antibodies against Pns9 of RGDV and expression of Pns9 in Spodoptera frugiperda cells, demonstrated that Pns9 is the minimal viral factor necessary for formation of viroplasm inclusion during infection by RGDV. When Pns9 in solution was observed under a conventional electron microscope, it appeared as ring-like aggregates of approximately 100 Å in diameter. Cryo-electron microscopic analysis of these aggregates revealed cylinders of octameric Pns9, whose dimensions were similar to those observed under the conventional electron microscope. Octamerization of Pns9 in solution was confirmed by the results of size-exclusion chromatography. Among proteins of viruses that belong to the family Reoviridae whose three-dimensional structures are available, a matrix protein of the viroplasm of rotavirus, NSP2, forms similar octamers, an observation that suggests similar roles for Pns9 and NSP2 in morphogenesis in animal-infecting and in plant-infecting reoviruses.


Author(s):  
T. L. Benning ◽  
P. Ingram ◽  
J. D. Shelburne

Two benzofuran derivatives, chlorpromazine and amiodarone, are known to produce inclusion bodies in human tissues. Prolonged high dose chlorpromazine therapy causes hyperpigmentation of the skin with electron-dense inclusion bodies present in dermal histiocytes and endothelial cells ultrastructurally. The nature of the deposits is not known although a drug-melanin complex has been hypothesized. Amiodarone may also cause cutaneous hyperpigmentation and lamellar lysosomal inclusion bodies have been demonstrated within the cells of multiple organ systems. These lamellar bodies are believed to be the product of an amiodarone-induced phospholipid storage disorder. We performed transmission electron microscopy (TEM) and energy dispersive x-ray microanalysis (EDXA) on tissue samples from patients treated with these drugs, attempting to detect the sulfur atom of chlorpromazine and the iodine atom of amiodarone within their respective inclusion bodies.A skin biopsy from a patient with hyperpigmentation due to prolonged chlorpromazine therapy was fixed in 4% glutaraldehyde and processed without osmium tetroxide or en bloc uranyl acetate for Epon embedding.


Author(s):  
A.D. Hyatt

Bluetongue virus (BTV) is the type species os the genus orbivirus in the family Reoviridae. The virus has a fibrillar outer coat containing two major structural proteins VP2 and VP5 which surround an icosahedral core. The core contains two major proteins VP3 and VP7 and three minor proteins VP1, VP4 and VP6. Recent evidence has indicated that the core comprises a neucleoprotein center which is surrounded by two protein layers; VP7, a major constituent of capsomeres comprises the outer and VP3 the inner layer of the core . Antibodies to VP7 are currently used in enzyme-linked immunosorbant assays and immuno-electron microscopical (JEM) tests for the detection of BTV. The tests involve the antibody recognition of VP7 on virus particles. In an attempt to understand how complete viruses can interact with antibodies to VP7 various antibody types and methodologies were utilized to determine the physical accessibility of the core to the external environment.


Author(s):  
H.M. Mazzone ◽  
W.F. Engler ◽  
G. Wray ◽  
A. Szirmae ◽  
J. Conroy ◽  
...  

Viral inclusion bodies isolated from infected pest insects are being evaluated by the U.S. Dept. of Agriculture as biological insecticides against their hosts. Our research on these inclusion bodies constitutes part of an effort to support their approval by the Environmental Protection Agency as insect control agents. The inclusion bodies in this study are polyhedral in shape and contain rod-shaped viral particles. When ingested by pest insects, the inclusion bodies are broken down in the insect gut and release the viral particles which infect and multiply in the nuclei of host cells. These viruses are termed nucleopolyhedrosis viruses (NPV) and are representatives of the baculoviruses (Wildy, P. 1971 IN J.L. Melnick, ed., Monographs in Virology, vol. 5, S.Karger, New York).


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 821
Author(s):  
Rohitash Yadav ◽  
Jitendra Kumar Chaudhary ◽  
Neeraj Jain ◽  
Pankaj Kumar Chaudhary ◽  
Supriya Khanra ◽  
...  

Coronavirus belongs to the family of Coronaviridae, comprising single-stranded, positive-sense RNA genome (+ ssRNA) of around 26 to 32 kilobases, and has been known to cause infection to a myriad of mammalian hosts, such as humans, cats, bats, civets, dogs, and camels with varied consequences in terms of death and debilitation. Strikingly, novel coronavirus (2019-nCoV), later renamed as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and found to be the causative agent of coronavirus disease-19 (COVID-19), shows 88% of sequence identity with bat-SL-CoVZC45 and bat-SL-CoVZXC21, 79% with SARS-CoV and 50% with MERS-CoV, respectively. Despite key amino acid residual variability, there is an incredible structural similarity between the receptor binding domain (RBD) of spike protein (S) of SARS-CoV-2 and SARS-CoV. During infection, spike protein of SARS-CoV-2 compared to SARS-CoV displays 10–20 times greater affinity for its cognate host cell receptor, angiotensin-converting enzyme 2 (ACE2), leading proteolytic cleavage of S protein by transmembrane protease serine 2 (TMPRSS2). Following cellular entry, the ORF-1a and ORF-1ab, located downstream to 5′ end of + ssRNA genome, undergo translation, thereby forming two large polyproteins, pp1a and pp1ab. These polyproteins, following protease-induced cleavage and molecular assembly, form functional viral RNA polymerase, also referred to as replicase. Thereafter, uninterrupted orchestrated replication-transcription molecular events lead to the synthesis of multiple nested sets of subgenomic mRNAs (sgRNAs), which are finally translated to several structural and accessory proteins participating in structure formation and various molecular functions of virus, respectively. These multiple structural proteins assemble and encapsulate genomic RNA (gRNA), resulting in numerous viral progenies, which eventually exit the host cell, and spread infection to rest of the body. In this review, we primarily focus on genomic organization, structural and non-structural protein components, and potential prospective molecular targets for development of therapeutic drugs, convalescent plasm therapy, and a myriad of potential vaccines to tackle SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document