scholarly journals Modeled Impacts of Farming Practices and Structural Agricultural Changes on Nitrogen Fluxes in the Netherlands

2001 ◽  
Vol 1 ◽  
pp. 664-672 ◽  
Author(s):  
Wim de Vries ◽  
Hans Kros ◽  
Oene Oenema

In the Netherlands, nutrient emissions from intensive animal husbandry have contributed to decreased species diversity in (semi) natural terrestrial and aquatic ecosystems, pollution of groundwater, and possibly global warming due to N2O emissions. This paper presents the results of a modelling study presenting the impacts of both structural measures and improved farming practices on major nitrogen (N) fluxes, including NH3and N2O emission, uptake, leaching, and runoff, in the Netherlands, using input data for the year 2000. Average annual fluxes (Gg N year–1) for the year 2000 were estimated at 132 for NH3emission (160 Gg NH3year–1), 28 for N2O emission, 50 for N inflow to groundwater, and 15 for N inflow to surface water at a total N input of 1046. At this input, nitrate (NO3) concentrations in groundwater often exceeded the target of 50 mg NO3l–1, specifically in well-drained sandy soils. The ammonia (NH3) emissions exceeded emission targets that were set to protect the biodiversity of nonagricultural land. Improved farming practices were calculated to lead to a significant reduction in NH3emissions to the atmosphere and N leaching and runoff to groundwater and surface water, but these improvements were not enough to reach all the targets set for those fluxes. Only strong structural measures clearly improved the situation. The NH3emission target of 30 Gg NH3year–1, suggested for the year 2030, could not be attained, however, unless pig and poultry farming is completely banned in the Netherlands and all cattle stay almost permanently in low emission stables.

1997 ◽  
Vol 45 (3) ◽  
pp. 347-360 ◽  
Author(s):  
G.L. Velthof ◽  
O. Oenema

A large part of the nitrogen (N) input in dairy farming systems in the Netherlands is lost from the system via N leaching and volatilization of gaseous N compounds, including the greenhouse gas nitrous oxide (N2O). The aim of the present study was to quantify N2O emission from dairy farming systems in the Netherlands, using a whole-farm approach. A total of 14 N2O sources was identified and emission factors were derived for each of these using the literature. Figures are presented for the amounts of N2O produced/kg herbage N produced (ranging from 4 to 89 g N2O-N kg-1 herbage N), depending on soil type and grassland management. Using Monte Carlo simulations, variations in mean total N2O emissions from the different sources were calculated for 3 model dairy farming systems differing in nutrient management. These different farming systems were chosen to assess the effect of improved nutrient management on total N2O emission. The total direct annual N2O emissions ranged from 15.4 +or-9.4 kg N2O-N/ha for the average dairy farming system in the 1980s to 5.3 +or-2.6 kg N2O-N/ha for a prototype of an economically feasible farming system with acceptable nutrient emissions. Leaching-derived, grazing-derived and fertilizer-derived N2O emissions were the major N2O sources on dairy farming systems. The total direct N2O emissions accounted for 3.2 to 4.6% of the N surplus on the dairy farming systems, suggesting that only a small amount of N was lost as N2O. Total N2O emissions from dairy farming systems in the Netherlands were 13.7+or-5.1 Gg N/year, which is about 35% of the estimated total N2O emission in the Netherlands. It is concluded that improvement of nutrient management of dairy farming systems will significantly decrease the N2O emissions from these systems, and thus the total N2O emission in the Netherlands.


2001 ◽  
Vol 1 ◽  
pp. 898-907 ◽  
Author(s):  
Wim de Vries ◽  
Hans Kros ◽  
Oene Oenema ◽  
Jan Willem Erisman

In the Netherlands, high traffic density and intensive animal husbandry have led to high emissions of reactive nitrogen (N) into the environment. This leads to a series of environmental impacts, including: (1) nitrate (NO3) contamination of drinking water, (2) eutrophication of freshwater lakes, (3) acidification and biodiversity impacts on terrestrial ecosystems, (4) ozone and particle formation affecting human health, and (5) global climate change induced by emissions of N2O. Measures to control reactive N emissions were, up to now, directed towards those different environmental themes. Here we summarize the results of a study to analyse the agricultural N problem in the Netherlands in an integrated way, which means that all relevant aspects are taken into account simultaneously. A simple N balance model was developed, representing all crucial processes in the N chain, to calculate acceptable N inputs to the farm (so-called N ceiling) and to the soil surface (application in the field) by feed concentrates, organic manure, fertiliser, deposition, and N fixation. The N ceilings were calculated on the basis of critical limits for NO3concentrations in groundwater, N concentrations in surface water, and ammonia (NH3) emission targets related to the protection of biodiversity of natural areas. Results show that in most parts of the Netherlands, except the western and the northern part, the N ceilings are limited by NH3emissions, which are derived from critical N loads for nature areas, rather than limits for both ground- and surface water. On the national scale, the N ceiling ranges between 372 and 858 kton year–1depending on the choice of critical limits. The current N import is 848 kton year–1. A decrease of nearly 60% is needed to reach the ceilings that are necessary to protect the environment against all adverse impacts of N pollution from agriculture.


1996 ◽  
Vol 33 (4-5) ◽  
pp. 183-189 ◽  
Author(s):  
Paul C. M. Boers

Agriculture causes 60% of the total nitrogen emissions and 40-50% of the total P emissions to the surface waters in the Netherlands. These high emissions are mainly caused by the large amounts of fertilizers used on Dutch farms. On average, 39 kg P ha−1 and 340 kg N ha−1 are given in excess to the uptake by the crop. The Netherlands follows a strategy of gradual reduction of the nutrient applications to crops. The first two phases were aimedat stabilisation and a gradual reduction of the use of organic manure. The goal of the third phase is to accomplish equilibrium fertilization in the year 2000. This means that the amount of fertilizer given may not exceed the crop uptake, considering an acceptable loss to the environment. The losses are based upon acceptable emissions, mainly to surface waters. With the average excess rainfall in the Netherlands, the water quality standards are met with a loss of 0.4 kg P ha−1 and 6 kg N ha−1, much lower than the present excesses of minerals. The challenge for the future is to close the gap between environmentally acceptable and present losses. Equilibrium fertilization will not solve all problems at short notice. Therefore, additional techniques to reduce nutrient losses are in development. Examples are restoration of buffer strips and wetlands, lowering of groundwater levels, dosing of ferric and aluminum compounds in the soils and several additional measures in eutrophied lakes.


2020 ◽  
Author(s):  
Vukašin Gligorić ◽  
Allard Feddes ◽  
Bertjan Doosje

Frankfurt defined persuasive communication that has no regard for truth, knowledge, or evidence as bullshit. Although there has been a lot of psychological research on pseudo-profound bullshit, no study examined this type of communication in politics. In the present research, we operationalize political bullshit receptivity as endorsing vague political statements, slogans, and political bullshit programs. We investigated the relationship of these three measures with pseudo-profound bullshit, ideology (political ideology, support for neoliberalism), populism, and voting behavior. Three pre-registered studies in different cultural settings (the United States, Serbia, The Netherlands; total N = 534) yielded medium to high intercorrelations between political bullshit measures and pseudo-profound bullshit, and good construct validity (hypothesized one-factor solution). A Bayesian meta-analysis showed that all political bullshit measures positively correlated with support for the free market, while only some positively correlated with social (political statements and programs) and economic conservatism (programs), and populism (programs). In the U.S., higher receptivity to political bullshit was associated with a higher probability that one voted for Trump (vs Clinton) in the past and higher intentions to vote for Trump (vs Biden and Sanders). In the Netherlands, higher receptivity to political bullshit predicted the intention to vote for the conservative-liberal People's Party for Freedom and Democracy. Exploratory analyses on merged datasets showed that higher receptivity to political bullshit was associated with a higher probability to vote for right-wing candidates/parties and lower probability for the left-wing ones. Overall, political bullshit endorsement showed good validity, opening avenues for research in political communication, especially when this communication is broad and meaningless.


1999 ◽  
Vol 39 (12) ◽  
pp. 257-264 ◽  
Author(s):  
Hans E. Andersen ◽  
Brian Kronvang ◽  
Søren E. Larsen

An empirical leaching model was applied to data on agricultural practices at the field level within 6 small Danish agricultural catchments in order to document any changes in nitrogen (N) leaching from the root zone during the period 1989-96. The model calculations performed at normal climate revealed an average reduction in N-leaching that amounted to 30% in the loamy catchments and 9% in the sandy catchments. The reductions in N leaching could be ascribed to several improvements in agricultural practices during the study period: (i) regulations on livestock density; (ii) regulations on the utilisation of animal manure; (iii) regulations concerning application practices for manure. The average annual total N-loss from agricultural areas to surface water constituted only 54% of the annual average N leached from the root zone in the three loamy catchments and 17% in the three sandy catchments. Thus, subsurface N-removal processes are capable of removing large amounts of N leached from agricultural land. An empirical model for the annual diffuse N-loss to streams from small catchments is presented. The model predicts annual N-loss as a function of the average annual use of mineral fertiliser and manure in the catchment and the total annual runoff from the unsaturated zone.


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


2000 ◽  
Vol 9 (3) ◽  
pp. 201-216 ◽  
Author(s):  
R. LEMOLA ◽  
E. TURTOLA ◽  
C. ERIKSSON

Nitrogen (N) leaching from spring barley with and without undersown Italian ryegrass was studied in Jokioinen, south-western Finland during five years (summer 1993–spring 1998) in 1.7 m deep lysimeters (Ø0.9 m) filled to 1.1 m with clay, silt, sand and peat soil. Tillage was performed in mid- October or in May, before sowing of the barley and ryegrass for the next season. In the second, third and fourth years of the experiment, total N leaching from barley without undersown ryegrass was 15, 7.9,32 and 38 kg ha-1 y-1 in clay, silt, sand and peat soil, respectively. Undersowing reduced N leaching by 52,31,68 and 27%. The reduction in N leaching from clay and sand when barley was undersown with ryegrass was nearly the same as the increased total uptake of N (barley +ryegrass).In sand soil, ryegrass was able to diminish the NO 3-N concentration of the drainage water well below the limit for acceptable drinking water. Spring tillage reduced N leaching only on peat soil (16%). Slight competition between the main and the undersown crop was indicated by lower N contents of the barley yield.;


2021 ◽  
Vol 72 (1) ◽  
pp. 17-38
Author(s):  
Jacques Van Keymeulen

Abstract Digital tools for dialectology at the Ghent UniversityTill the year 2000, all professors of Dutch Linguistics at Ghent University were professional dialectologists, who were at pains to carefully document the dialects of Dutch speaking Belgium. These efforts resulted in large collections of dialect data. During the last decade, all collections were digitized and made available in open access to a large audience. In this article, we will in short present both already available databases (and the accompanying tools) and the projects in progress. Eventually, all Ghent dialect databases will be hosted and cared for by the Instituut voor de Nederlandse Taal (Institute for the Dutch Language) at Leiden (The Netherlands).


2008 ◽  
Vol 17 (1) ◽  
pp. 73 ◽  
Author(s):  
A. NYKÄNEN ◽  
A. GRANSTEDT ◽  
L. JAUHIAINEN

Legume-based leys form the basis for crop rotations in organic farming as they fix nitrogen (N) from the atmosphere for the succeeding crops. The age, yield, C:N, biological N fixation (BNF) and total N of red clover-grass leys were studied for their influence on yields, N uptake and N use efficiency (NUE) of the two sequential cereal crops planted after the leys. Mineral N in deeper soil (30-90 cm) was measured to determine N leaching risk. Altogether, four field experiments were carried out in 1994-1998 at two sites. The age of the ley had no significant effect on the yields and N uptake of the two subsequent cereals. Surprisingly, the residual effect of the leys was negligible, at 0–20 kg N ha-1yr-1. On the other hand, the yield and C:N of previous red clover-grass leys, as well as BNF-N and total-N incorporated into the soil influenced subsequent cereals. NUEs of cereals after ley incorporation were rather high, varying from 30% to 80%. This might indicate that other factors, such as competition from weeds, prevented maximal growth of cereals. The mineral N content deeper in the soil was mostly below 10 kg ha-1 in the sandy soil of Juva, but was 5-25 kg ha-1 in clayey soil of Mietoinen.;


Sign in / Sign up

Export Citation Format

Share Document