scholarly journals Predicting brain-age from multimodal imaging data captures cognitive impairment

2016 ◽  
Author(s):  
Franziskus Liem ◽  
Gaël Varoquaux ◽  
Jana Kynast ◽  
Frauke Beyer ◽  
Shahrzad Kharabian Masouleh ◽  
...  

The disparity between the chronological age of an individual and their brain-age measured based on biological information has the potential to offer clinically-relevant biomarkers of neurological syndromes that emerge late in the lifespan. While prior brain-age prediction studies have relied exclusively on either structural or functional brain data, here we investigate how multimodal brain-imaging data improves age prediction. Using cortical anatomy and whole-brain functional connectivity on a large adult lifespan sample (N = 2354, age 19-82), we found that multimodal data improves brain-based age prediction, resulting in a mean absolute prediction error of 4.29 years. Furthermore, we found that the discrepancy between predicted age and chronological age captures cognitive impairment. Importantly, the brain-age measure was robust to confounding effects: head motion did not drive brain-based age prediction and our models generalized reasonably to an independent dataset acquired at a different site (N = 475). Generalization performance was increased by training models on a larger and more heterogeneous dataset. The robustness of multimodal brain-age prediction to confounds, generalizability across sites, and sensitivity to clinically-relevant impairments, suggests promising future application to the early prediction of neurocognitive disorders.

2019 ◽  
Author(s):  
Geneviève Richard ◽  
Knut Kolskår ◽  
Kristine M. Ulrichsen ◽  
Tobias Kaufmann ◽  
Dag Alnæs ◽  
...  

AbstractCognitive deficits are important predictors for outcome, independence and quality of life after stroke, but often remain unnoticed and unattended because other impairments are more evident. Computerized cognitive training (CCT) is among the candidate interventions that may alleviate cognitive difficulties, but the evidence supporting its feasibility and effectiveness is scarce, partly due to the lack of tools for outcome prediction and monitoring. Magnetic resonance imaging (MRI) provides candidate markers for disease monitoring and outcome prediction. By integrating information not only about lesion extent and localization, but also regarding the integrity of the unaffected parts of the brain, advanced MRI provides relevant information for developing better prediction models in order to tailor cognitive intervention for patients, especially in a chronic phase.Using brain age prediction based on MRI based brain morphometry and machine learning, we tested the hypotheses that stroke patients with a younger-appearing brain relative to their chronological age perform better on cognitive tests and benefit more from cognitive training compared to patients with an older-appearing brain. In this randomized double-blind study, 54 patients who suffered mild stroke (>6 months since hospital admission, NIHSS<7 at hospital discharge) underwent 3-weeks CCT and MRI before and after the intervention. In addition, patients were randomized to one of two groups receiving either active or sham transcranial direct current stimulation (tDCS). We tested for main effects of brain age gap (estimated age – chronological age) on cognitive performance, and associations between brain age gap and task improvement. Finally, we tested if longitudinal changes in brain age gap during the intervention were sensitive to treatment response. Briefly, our results suggest that longitudinal brain age prediction based on automated brain morphometry is feasible and reliable in stroke patients. However, no significant association between brain age and both performance and response to cognitive training were found.


2017 ◽  
Author(s):  
Jenessa Lancaster ◽  
Romy Lorenz ◽  
Rob Leech ◽  
James H Cole

AbstractNeuroimaging-based age predictions using machine learning have been shown to relate to cognitive performance, health outcomes and progression of neurodegenerative disease. However, even leading age-prediction algorithms contain measurement error, motivating efforts to improve experimental pipelines. T1-weighted MRI is commonly used for age prediction, and the pre-processing of these scans involves normalisation to a common template and resampling to a common voxel size, followed by spatial smoothing. Resampling parameters are often selected arbitrarily. Here, we sought to improve brain-age prediction accuracy by optimising resampling parameters using Bayesian optimisation.Using data on N=2001 healthy individuals (aged 16-90 years) we trained support vector machines to i) distinguish between young (<50 years) and old (>50 years) brains and ii) predict chronological age, with accuracy assessed using cross-validation. We also evaluated model generalisability to the Cam-CAN dataset (N=648, aged 18-88 years). Bayesian optimisation was used to identify optimal voxel size and smoothing kernel size for each task. This procedure adaptively samples the parameter space to evaluate accuracy across a range of possible parameters, using independent sub-samples to iteratively assess different parameter combinations to arrive at optimal values.When distinguishing between young and old brains a classification accuracy of 96.25% was achieved, with voxel size = 11.5mm3 and smoothing kernel = 2.3mm. For predicting chronological age, a mean absolute error (MAE) of 5.08 years was achieved, with voxel size = 3.73mm3 and smoothing kernel = 3.68mm. This was compared to performance using default values of 1.5mm3 and 4mm respectively, which gave a MAE = 5.48 years, a 7.3% improvement. When assessing generalisability, best performance was achieved when applying the entire Bayesian optimisation framework to the new dataset, out-performing the parameters optimised for the initial training dataset.Our study demonstrates the proof-of-principle that neuroimaging models for brain age prediction can be improved by using Bayesian optimisation to select more appropriate pre-processing parameters. Our results suggest that different parameters are selected and performance improves when optimisation is conducted in specific contexts. This motivates use of optimisation techniques at many different points during the experimental process, which may result in improved statistical sensitivity and reduce opportunities for experimenter-led bias.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matthias S. Treder ◽  
Jonathan P. Shock ◽  
Dan J. Stein ◽  
Stéfan du Plessis ◽  
Soraya Seedat ◽  
...  

In neuroimaging, the difference between chronological age and predicted brain age, also known as brain age delta, has been proposed as a pathology marker linked to a range of phenotypes. Brain age delta is estimated using regression, which involves a frequently observed bias due to a negative correlation between chronological age and brain age delta. In brain age prediction models, this correlation can manifest as an overprediction of the age of young brains and an underprediction for elderly ones. We show that this bias can be controlled for by adding correlation constraints to the model training procedure. We develop an analytical solution to this constrained optimization problem for Linear, Ridge, and Kernel Ridge regression. The solution is optimal in the least-squares sense i.e., there is no other model that satisfies the correlation constraints and has a better fit. Analyses on the PAC2019 competition data demonstrate that this approach produces optimal unbiased predictive models with a number of advantages over existing approaches. Finally, we introduce regression toolboxes for Python and MATLAB that implement our algorithm.


2020 ◽  
Author(s):  
Jaroslav Rokicki ◽  
Thomas Wolfers ◽  
Wibeke Nordhøy ◽  
Natalia Tesli ◽  
Daniel S. Quintana ◽  
...  

BackgroundThe deviation between chronological age and age predicted using brain MRI is a putative marker of brain health and disease-related deterioration. Age prediction based on structural MRI data shows high accuracy and sensitivity to common brain disorders. However, brain aging is complex and heterogenous, both in terms of individual differences and the biological processes involved. Here, we implemented a multimodal age prediction approach and tested the predictive value across patients with a range of disorders with distinct etiologies and clinical features.MethodsWe implemented a multimodal model to estimate brain age using different combinations of cortical area, thickness and sub-cortical volumes, cortical and subcortical T1/T2-weighted ratios, and cerebral blood flow (CBF) calculated from functional arterial spin labeling (ASL) data. For each of the 11 models we assessed the age prediction accuracy in HC n=761 and compared the resulting brain age gaps (BAGs) between each clinical group and age-matched subsets of HC in patients with Alzheimer’s disease (AD, n=54), mild cognitive impairment (MCI, n=88), subjective cognitive impairment (SCI, n=55), schizophrenia (SZ, n=156), bipolar disorder (BD, n=136), autism spectrum disorder (ASD, n=28).ResultsAmong the 11 models, we found highest age prediction accuracy in HC when integrating all modalities (mean absolute error=6.5 years). Beyond this global BAG, the area under the curve for the receiver-operating characteristics based on two-group case-control classifications showed strongest effects for AD and ASD in global T1-weighted BAG (T1w-BAG), while MCI, SCI, BD and SZ showed strongest effects in CBF-based BAGs.ConclusionsCombining multiple MRI modalities improves brain age prediction and reveals distinct deviations in patients with psychiatric and neurological disorders. The multimodal BAG was most accurate in predicting age in HC, while group differences between patients and controls were often larger for BAGs based on single modalities. These findings demonstrate that multidimensional phenotyping provides a mapping of overlapping and distinct pathophysiology in common disorders of the brain, and specifically suggest metabolic and neurovascular aberrations in SZ and at-risk and early stage dementia.


2021 ◽  
Author(s):  
Jeyeon Lee ◽  
Brian Burkett ◽  
Hoon-Ki Min ◽  
Matthew Senjem ◽  
Emily Lundt ◽  
...  

Abstract Normal brain aging is accompanied by patterns of functional and structural change. Alzheimer's disease (AD), a representative neurodegenerative disease, has been linked to accelerated brain aging at respective age ranges. Here, we developed a deep learning-based brain age prediction model using fluorodeoxyglucose (FDG) PET and structural MRI and tested how the brain age gap relates to degenerative cognitive syndromes including mild cognitive impairment, AD, frontotemporal dementia, and Lewy body dementia. Occlusion analysis, performed to facilitate interpretation of the model, revealed that the model learns an age- and modality-specific pattern of brain aging. The elevated brain age gap in dementia cohorts was highly correlated with the cognitive impairment and AD biomarker. However, regions generating brain age gaps were different for each diagnosis group of which the AD continuum showed similar patterns to normal aging in the CU.


2020 ◽  
Author(s):  
Won Hee Lee ◽  
Mathilde Antoniades ◽  
Hugo G Schnack ◽  
Rene S. Kahn ◽  
Sophia Frangou

AbstractBackgroundSchizophrenia has been associated with lifelong deviations in the normative trajectories of brain structure. These deviations can be captured using the brain-predicted age difference (brainPAD), which is the difference between the biological age of an individual’s brain, as inferred from neuroimaging data, and their chronological age. Various machine learning algorithms are currently used for this purpose but their comparative performance has yet to be systematically evaluated.MethodsSix linear regression algorithms, ordinary least squares (OLS) regression, ridge regression, least absolute shrinkage and selection operator (Lasso) regression, elastic-net regression, linear support vector regression (SVR), and relevance vector regression (RVR), were applied to brain structural data acquired on the same 3T scanner using identical sequences from patients with schizophrenia (n=90) and healthy individuals (n=200). The performance of each algorithm was quantified by the mean absolute error (MAE) and the correlation (R) between predicted brain-age and chronological age. The inter-algorithm similarity in predicted brain-age, brain regional regression weights and brainPAD were compared using correlation analyses and hierarchical clustering.ResultsIn patients with schizophrenia, ridge regression, Lasso regression, elastic-net regression, and RVR performed very similarly and showed a high degree of correlation in predicted brain-age (R>0.94) and brain regional regression weights (R>0.66). By contrast, OLS regression, which was the only algorithm without a penalty term, performed markedly worse and showed a lower similarity with the other algorithms. The mean brainPAD was higher in patients than in healthy individuals but varied by algorithm from 3.8 to 5.2 years although all analyses were performed on the same dataset.ConclusionsLinear machine learning algorithms, with the exception of OLS regression, have comparable performance for age prediction on the basis of a combination of cortical and subcortical structural measures. However, algorithm choice introduced variation in brainPAD estimation, and therefore represents an important source of inter-study variability.


2021 ◽  
Author(s):  
Sivaniya Subramaniapillai ◽  
Sana Suri ◽  
Claudia Barth ◽  
Ivan Maximov ◽  
Irene Voldsbekk ◽  
...  

Cardiometabolic risk factors (CMRs) are associated with accelerated brain aging and increased risk for sex-dimorphic illnesses such as Alzheimer’s Disease (AD). Yet, it is unknown how CMRs interact with sex and apolipoprotein E-ε4 (APOE4), a known genetic risk factor for AD, to influence brain age across different life stages. Using age prediction based on multi-shell diffusion-weighted imaging data in 21,308 UK Biobank participants, we investigated whether associations between white matter Brain Age Gap (BAG) and body mass index (BMI), waist-to-hip ratio (WHR), body fat percentage (BF%), and APOE4 status varied i) between males and females, ii) according to age at menopause in females, and iii) across different age groups in males and females. We report sex differences in associations between BAG and all three CMRs, with stronger positive associations among males com- pared to females. Higher BAG (older brain age relative to chronological age) was associated with greater BMI, WHR, and BF% in males, whereas in females, higher BAG was associated with greater WHR, but not BMI and BF%. These divergent associations were most prominent within the oldest group of females (66-81yrs), where higher BF% was linked to lower BAG (younger brain age relative to chronological age). Earlier menopause transition was associated with higher BAG, but no interactions were found with CMRs. APOE4 status was not significantly associated with BAG, and no significant interactions with CMRs were found. In conclusion, the findings point to sex- and age-specific associations between body fat composition and brain age. Incorporating sex as a factor of interest in studies addressing cardiometabolic risk may promote sex-specific precision medicine, consequently improving health care for both males and females.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Seth Christman ◽  
Camilo Bermudez ◽  
Lingyan Hao ◽  
Bennett A. Landman ◽  
Brian Boyd ◽  
...  

Abstract Depression is associated with markers of accelerated aging, but it is unclear how this relationship changes across the lifespan. We examined whether a brain-based measure of accelerated aging differed between depressed and never-depressed subjects across the adult lifespan and whether it was related to cognitive performance and disability. We applied a machine-learning approach that estimated brain age from structural MRI data in two depressed cohorts, respectively 170 midlife adults and 154 older adults enrolled in studies with common entry criteria. Both cohorts completed broad cognitive batteries and the older subgroup completed a disability assessment. The machine-learning model estimated brain age from MRI data, which was compared to chronological age to determine the brain–age gap (BAG; estimated age-chronological age). BAG did not differ between midlife depressed and nondepressed adults. Older depressed adults exhibited significantly higher BAG than nondepressed elders (Wald χ2 = 8.84, p = 0.0029), indicating a higher estimated brain age than chronological age. BAG was not associated with midlife cognitive performance. In the older cohort, higher BAG was associated with poorer episodic memory performance (Wald χ2 = 4.10, p = 0.0430) and, in the older depressed group alone, slower processing speed (Wald χ2 = 4.43, p = 0.0354). We also observed a statistical interaction where greater depressive symptom severity in context of higher BAG was associated with poorer executive function (Wald χ2 = 5.89, p = 0.0152) and working memory performance (Wald χ2 = 4.47, p = 0.0346). Increased BAG was associated with greater disability (Wald χ2 = 6.00, p = 0.0143). Unlike midlife depression, geriatric depression exhibits accelerated brain aging, which in turn is associated with cognitive and functional deficits.


2019 ◽  
Author(s):  
Johnny Wang ◽  
Maria J. Knol ◽  
Aleksei Tiulpin ◽  
Florian Dubost ◽  
Marleen de Bruijne ◽  
...  

Key PointsQuestionIs the gap between brain age predicted from MRI and chronological age associated with incident dementia in a general population of Dutch adults?FindingsBrain age was predicted using a deep learning model, using MRI-derived grey matter density maps. In a population based study including 5496 participants, the observed gap was significantly associated with the risk of dementia.MeaningThe gap between MRI-brain predicted and chronological age is potentially a biomarker for dementia risk screening.AbstractImportanceThe gap between predicted brain age using magnetic resonance imaging (MRI) and chronological age may serve as biomarker for early-stage neurodegeneration and potentially as a risk indicator for dementia. However, owing to the lack of large longitudinal studies, it has been challenging to validate this link.ObjectiveWe aimed to investigate the utility of such a gap as a risk biomarker for incident dementia in a general Dutch population, using a deep learning approach for predicting brain age based on MRI-derived grey matter maps.DesignData was collected from participants of the cohort-based Rotterdam Study who underwent brain magnetic resonance imaging between 2006 and 2015. This study was performed in a longitudinal setting and all participant were followed up for incident dementia until 2016.SettingThe Rotterdam Study is a prospective population-based study, initiated in 1990 in the suburb Ommoord of in Rotterdam, the Netherlands.ParticipantsAt baseline, 5496 dementia- and stroke-free participants (mean age 64.67±9.82, 54.73% women) were scanned and screened for incident dementia. During 6.66±2.46 years of follow-up, 159 people developed dementia.Main outcomes and measuresWe built a convolutional neural network (CNN) model to predict brain age based on its MRI. Model prediction performance was measured in mean absolute error (MAE). Reproducibility of prediction was tested using the intraclass correlation coefficient (ICC) computed on a subset of 80 subjects. Logistic regressions and Cox proportional hazards were used to assess the association of the age gap with incident dementia, adjusted for years of education, ApoEε4 allele carriership, grey matter volume and intracranial volume. Additionally, we computed the attention maps of CNN, which shows which brain regions are important for age prediction.ResultsMAE of brain age prediction was 4.45±3.59 years and ICC was 0.97 (95% confidence interval CI=0.96-0.98). Logistic regression and Cox proportional hazards models showed that the age gap was significantly related to incident dementia (odds ratio OR=1.11 and 95% confidence intervals CI=1.05-1.16; hazard ratio HR=1.11 and 95% CI=1.06-1.15, respectively). Attention maps indicated that grey matter density around the amygdalae and hippocampi primarily drive the age estimation.Conclusion and relevanceWe show that the gap between predicted and chronological brain age is a biomarker associated with risk of dementia development. This suggests that it can be used as a biomarker, complimentary to those that are known, for dementia risk screening.


Sign in / Sign up

Export Citation Format

Share Document