scholarly journals Functional constraints on replacing an essential gene with its ancient and modern homologs

2016 ◽  
Author(s):  
Betül Kacar ◽  
Eva Garmendia ◽  
Nurcan Tunçbağ ◽  
Dan I. Andersson ◽  
Diarmaid Hughes

AbstractThe complexity hypothesis posits that network connectivity and protein function are two important determinants of how a gene adapts to and functions in a foreign genome. Genes encoding proteins that carry out essential informational tasks in the cell, in particular where multiple interaction partners are involved, are less likely to be transferable to a foreign organism. Here we investigated the constraints on transfer of a gene encoding a highly conserved informational protein, translation elongation factor Tu (EF-Tu), by systematically replacing the endogenoustufAgene in theEscherichia coligenome with its extant and ancestral homologs. The extant homologs representedtufvariants from both near and distant homologous organisms. The ancestral homologs represented phylogenetically resurrectedtufsequences dating from 0.7 to 3.6 bya. Our results demonstrate that all of the foreigntufgenes are transferable to theE. coligenome, provided that an additional copy of the EF-Tu gene,tufB, remains present in theE. coligenome. However, when thetufBgene was removed, only the variants obtained from the γ-proteobacterial family (extant and ancestral), supported growth. This demonstrates the limited functional interchangability ofE. coli tufwith its homologs. Our data show a linear correlation between relative bacterial fitness and the evolutionary distance of the extanttufhomologs inserted into theE. coligenome. Our data and analysis also suggest that the functional conservation of protein activity, and its network interactivity, act to constrain the successful transfer of this essential gene into foreign bacteria.

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Betül Kacar ◽  
Eva Garmendia ◽  
Nurcan Tuncbag ◽  
Dan I. Andersson ◽  
Diarmaid Hughes

ABSTRACTGenes encoding proteins that carry out essential informational tasks in the cell, in particular where multiple interaction partners are involved, are less likely to be transferable to a foreign organism. Here, we investigated the constraints on transfer of a gene encoding a highly conserved informational protein, translation elongation factor Tu (EF-Tu), by systematically replacing the endogenoustufAgene in theEscherichia coligenome with its extant and ancestral homologs. The extant homologs representedtufvariants from both near and distant homologous organisms. The ancestral homologs represented phylogenetically resurrectedtufsequences dating from 0.7 to 3.6 billion years ago (bya). Our results demonstrate that all of the foreigntufgenes are transferable to theE. coligenome, provided that an additional copy of the EF-Tu gene,tufB, remains present in theE. coligenome. However, when thetufBgene was removed, only the variants obtained from the gammaproteobacterial family (extant and ancestral) supported growth which demonstrates the limited functional interchangeability ofE. coli tufwith its homologs. Relative bacterial fitness correlated with the evolutionary distance of the extanttufhomologs inserted into theE. coligenome. This reduced fitness was associated with reduced levels of EF-Tu and reduced rates of protein synthesis. Increasing the expression oftufpartially ameliorated these fitness costs. In summary, our analysis suggests that the functional conservation of protein activity, the amount of protein expressed, and its network connectivity act to constrain the successful transfer of this essential gene into foreign bacteria.IMPORTANCEHorizontal gene transfer (HGT) is a fundamental driving force in bacterial evolution. However, whether essential genes can be acquired by HGT and whether they can be acquired from distant organisms are very poorly understood. By systematically replacingtufwith ancestral homologs and homologs from distantly related organisms, we investigated the constraints on HGT of a highly conserved gene with multiple interaction partners. The ancestral homologs represented phylogenetically resurrectedtufsequences dating from 0.7 to 3.6 bya. Only variants obtained from the gammaproteobacterial family (extant and ancestral) supported growth, demonstrating the limited functional interchangeability ofE. coli tufwith its homologs. Our analysis suggests that the functional conservation of protein activity, the amount of protein expressed, and its network connectivity act to constrain the successful transfer of this essential gene into foreign bacteria.


1996 ◽  
Vol 16 (8) ◽  
pp. 4305-4311 ◽  
Author(s):  
X Liu ◽  
B Li ◽  
GorovskyMA

Although variants have been identified for every class of histone, their functions remain unknown. We have been studying the histone H2A variant hv1 in the ciliated protozoan Tetrahymena thermophila. Sequence analysis indicates that hv1 belongs to the H2A.F/Z type of histone variants. On the basis of the high degree of evolutionary conservation of this class of histones, they are proposed to have one or more distinct and essential functions that cannot be performed by their major H2A counterparts. Considerable evidence supports the hypothesis that the hv1 protein in T. thermophila and hv1-like proteins in other eukaryotes are associated with active chromatin. In T. thermophila, simple mass transformation and gene replacement techniques have recently become available. In this report, we demonstrate that either the HTA1 gene or the HTA2 gene, encoding the major H2As, can be completely replaced by disrupted genes in the polyploid, transcriptionally active macronucleus, indicating that neither of the two genes is essential. However, only some of the HTA3 genes encoding hv1 can be replaced by disrupted genes, indicating that the H2A.F/Z type variants have an essential function that cannot be performed by the major H2A genes. Thus, an essential gene in T. thermophila can be defined by the fact that it can be partially, but not completely, eliminated from the polyploid macronucleus. To our knowledge, this study represents the first use of gene disruption technology to study core histone gene function in any organism other than yeast and the first demonstration of an essential gene in T. thermophila using these methods. When a rescuing plasmid carrying a wild-type HTA3 gene was introduced into the T. thermophila cells, the endogenous chromosomal HTA3 could be completely replaced, defining a gene replacement strategy that can be used to analyze the function of essential genes.


2019 ◽  
Vol 116 (48) ◽  
pp. 24164-24173 ◽  
Author(s):  
Juhan Kim ◽  
Jake J. Flood ◽  
Michael R. Kristofich ◽  
Cyrus Gidfar ◽  
Andrew B. Morgenthaler ◽  
...  

PdxB (erythronate 4-phosphate dehydrogenase) is expected to be required for synthesis of the essential cofactor pyridoxal 5′-phosphate (PLP) in Escherichia coli. Surprisingly, incubation of the ∆pdxB strain in medium containing glucose as a sole carbon source for 10 d resulted in visible turbidity, suggesting that PLP is being produced by some alternative pathway. Continued evolution of parallel lineages for 110 to 150 generations produced several strains that grow robustly in glucose. We identified a 4-step bypass pathway patched together from promiscuous enzymes that restores PLP synthesis in strain JK1. None of the mutations in JK1 occurs in a gene encoding an enzyme in the new pathway. Two mutations indirectly enhance the ability of SerA (3-phosphoglycerate dehydrogenase) to perform a new function in the bypass pathway. Another disrupts a gene encoding a PLP phosphatase, thus preserving PLP levels. These results demonstrate that a functional pathway can be patched together from promiscuous enzymes in the proteome, even without mutations in the genes encoding those enzymes.


Microbiology ◽  
2010 ◽  
Vol 156 (10) ◽  
pp. 3021-3030 ◽  
Author(s):  
Ana G. Reyes ◽  
Nick Geukens ◽  
Philip Gutschoven ◽  
Stijn De Graeve ◽  
René De Mot ◽  
...  

Ribosome-inactivating proteins (RIPs) are cytotoxic N-glycosidases identified in numerous plants, but also constitute a subunit of the bacterial Shiga toxin. Classification of plant RIPs is based on the absence (type I) or presence (type II) of an additional lectin module. In Shiga toxin, sugar binding is mediated by a distinct RIP-associated homopentamer. In the genome of two actinomycetes, we identified RIP-like proteins that resemble plant type I RIPs rather than the RIP subunit (StxA) of Shiga toxin. Some representatives of β- and γ-proteobacteria also contain genes encoding RIP-like proteins, but these are homologous to StxA. Here, we describe the isolation and initial characterization of the RIP-like gene product SCO7092 (RIPsc) from the Gram-positive soil bacterium Streptomyces coelicolor. The ripsc gene was expressed in Escherichia coli as a recombinant protein of about 30 kDa, and displayed the characteristic N-glycosidase activity causing specific rRNA depurination. In Streptomyces lividans and E. coli, RIPsc overproduction resulted in a dramatic decrease in the growth rate. In addition, intracellular production was deleterious for Saccharomyces cerevisiae. However, when applied externally to microbial cells, purified RIPsc did not display antibacterial or antifungal activity, suggesting that it cannot enter these cells. In a cell-free system, however, purified S. coelicolor RIPsc protein displayed strong inhibitory activity towards protein translation.


2013 ◽  
Vol 81 (4) ◽  
pp. 1078-1089 ◽  
Author(s):  
Yogitha N. Srikhanta ◽  
Dianna M. Hocking ◽  
Judyta Praszkier ◽  
Matthew J. Wakefield ◽  
Roy M. Robins-Browne ◽  
...  

ABSTRACTAraC-like regulators play a key role in the expression of virulence factors in enteric pathogens, such as enteropathogenicEscherichia coli(EPEC), enterotoxigenicE. coli, enteroaggregativeE. coli, andCitrobacter rodentium. Bioinformatic analysis of the genome of rabbit-specific EPEC (REPEC) strain E22 (O103:H2) revealed the presence of a gene encoding an AraC-like regulatory protein, RegR, which shares 71% identity to the global virulence regulator, RegA, ofC. rodentium. Microarray analysis demonstrated that RegR exerts 25- to 400-fold activation on transcription of several genes encoding putative virulence-associated factors, including a fimbrial operon (SEF14), a serine protease, and an autotransporter adhesin. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins. The mechanism of RegR-mediated activation was investigated by using its most highly upregulated gene target,sefA. Transcriptional analyses and electrophoretic mobility shift assays showed that RegR activates the expression ofsefAby binding to a region upstream of thesefApromoter, thereby relieving gene silencing by the global regulatory protein H-NS. Moreover, RegR was found to contribute significantly to virulence in a rabbit infection experiment. Taken together, our findings indicate that RegR controls the expression of a series of accessory adhesins that significantly enhance the virulence of REPEC strain E22.


1986 ◽  
Vol 164 (3) ◽  
pp. 794-813 ◽  
Author(s):  
R Linsk ◽  
J Vogel ◽  
H Stauss ◽  
J Forman ◽  
R S Goodenow

The UV-induced, C3H fibrosarcoma, 1591, expresses at least three unique MHC class I antigens not found on normal C3H tissue. Here we report the complete DNA sequence of the three novel class I genes encoding these molecules, and describe in detail the recognition of the individual products by tumor-reactive and allospecific CTL. Remarkably, although C3H does not appear to express H-2L locus information, this C3H tumor expresses two distinct antigens, termed A149 and A166, which are extremely homologous to each other and to the H-2Ld antigen from BALB/c. The gene encoding the third novel class I antigen from 1591, A216, is quite homologous to H-2Kk) throughout its 3' end. Since all three of these genes account for polymorphic restriction fragments not found in C3H, it is likely that they were derived by recombination from the endogenous class I genes of C3H. The DNA sequence homology of A149, A166, and H-2Ld is especially significant given the functional conservation observed between the products of these genes. Limited sequence substitutions appear to correlate with some of the discrete serological differences observed between these molecules. In addition, both A149 and A166 crossreact, but to differing extents, with H-2Ld at the level of T cell recognition. Our results are consistent with the view that CTL recognize complex conformational determinants on class I molecules, but extend previous observations by comparing a set of antigens with discrete and overlapping structural and functional differences.


1995 ◽  
Vol 131 (5) ◽  
pp. 1243-1259 ◽  
Author(s):  
K C Gunsalus ◽  
S Bonaccorsi ◽  
E Williams ◽  
F Verni ◽  
M Gatti ◽  
...  

We describe the phenotypic and molecular characterization of twinstar (tsr), an essential gene in Drosophila melanogaster. Two P-element induced alleles of tsr (tsr1 and tsr2) result in late larval or pupal lethality. Cytological examination of actively dividing tissues in these mutants reveals defects in cytokinesis in both mitotic (larval neuroblast) and meiotic (larval testis) cells. In addition, mutant spermatocytes show defects in aster migration and separation during prophase/prometaphase of both meiotic divisions. We have cloned the gene affected by these mutations and shown that it codes for a 17-kD protein in the cofilin/ADF family of small actin severing proteins. A cDNA for this gene has previously been described by Edwards et al. (1994). Northern analysis shows that the tsr gene is expressed throughout development, and that the tsr1 and tsr2 alleles are hypomorphs that accumulate decreased levels of tsr mRNA. These findings prompted us to examine actin behavior during male meiosis to visualize the effects of decreased twinstar protein activity on actin dynamics in vivo. Strikingly, both mutants exhibit abnormal accumulations of F-actin. Large actin aggregates are seen in association with centrosomes in mature primary spermatocytes. Later, during ana/telophase of both meiotic divisions, aberrantly large and misshaped structures appear at the site of contractile ring formation and fail to disassemble at the end of telophase, in contrast with wild-type. We discuss these results in terms of possible roles of the actin-based cytoskeleton in centrosome movement and in cytokinesis.


2017 ◽  
Vol 11 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Abdulaziz Zorgani ◽  
Hiyam Daw ◽  
Najib Sufya ◽  
Abdullah Bashein ◽  
Omar Elahmer ◽  
...  

Introduction: Extended-spectrum β-lactamases (ESBLs), including the AmpC type, are important mechanisms of resistance among Klebsiella pneumoniae and Escherichia coli isolates. Objective: The aim of the study was to investigate the occurrence of AmpC-type β-lactamase producers isolated from two hospitals in Tripoli, Libya. Methods: All clinical isolates (76 K. pneumoniae and 75 E. coli) collected over two years (2013-2014) were evaluated for susceptibility to a panel of antimicrobials and were analyzed phenotypically for the ESBL and AmpC phenotype using E-test and ESBL and AmpC screen disc test. Both ESBL and AmpC-positive isolates were then screened for the presence of genes encoding plasmid-mediated AmpC β-lactamases by polymerase chain reaction (PCR). Results: Of the K. pneumoniae and E. coli tested, 75% and 16% were resistant to gentamicin, 74% and 1.3% to imipenem, 71% and 12% to cefoxitin, 80% and 12% to cefepime, 69% and 22.6% to ciprofloxacin, respectively. None of the E. coli isolates were multidrug resistant compared with K. pneumoniae (65.8%). K. pneumoniae ESBL producers were significantly higher (85.5%) compared with (17.3%) E. coli isolates (P <0.0001, OR=4.93). Plasmid-mediated AmpC genes were detected in 7.9% of K. pneumoniae, and 4% E. coli isolates. There was low agreement between phenotypic and genotypic methods, phenotypic testing underestimated detection of AmpC enzyme and did not correlate well with molecular results. The gene encoding CMY enzyme was the most prevalent (66.6%) of AmpC positive isolates followed by MOX, DHA and EBC. Only one AmpC gene was detected in 5/9 isolates, i.e, blaCMY (n=3), bla MOX (n=1), blaDHA (n=1). However, co-occurrence of AmpC genes were evident in 3/9 isolates with the following distribution: bla CMY and blaEBC (n=1), and blaCMY and blaMOX (n=2). Neither blaFOX nor blaACC was detected in all tested isolates. All AmpC positive strains were resistant to cefoxitin and isolated from patients admitted to intensive care units. Conclusion: Further studies are needed for detection of other AmpC variant enzyme production among such isolates. Continued surveillance and judicious antibiotic usage together with the implementation of efficient infection control measures are absolutely required.


2010 ◽  
Vol 192 (23) ◽  
pp. 6172-6181 ◽  
Author(s):  
Aishwarya V. Ramaswamy ◽  
Anthony T. Maurelli

ABSTRACT Lipoic acid is an essential protein bound cofactor that is vital for the functioning of several important enzymes involved in central metabolism. Genomes of all sequenced chlamydiae show the presence of two genes encoding lipoic acid ligases and one gene encoding a lipoate synthase. However, the roles of these proteins in lipoic acid utilization or biosynthesis have not yet been characterized. The two distinct lipoic acid ligases in Chlamydia trachomatis serovar L2, LplA1Ct and LplA2Ct (encoded by the open reading frames ctl0537 and ctl0761) display moderate identity with Escherichia coli LplA (30 and 27%, respectively) but possess amino acid sequence motifs that are well conserved among all lipoyl protein ligases. The putative lipoic acid synthase LipACt, encoded by ctl0815, is ca. 43% identical to the E. coli LipA homolog. We demonstrate here the presence of lipoylated proteins in C. trachomatis serovar L2 and show that the lipoic acid ligase LplA1Ct is capable of utilizing exogenous lipoic acid for the lipoylation Therefore, host-derived lipoic acid may be important for intracellular growth and development. Based on genetic complementation in a surrogate host, our study also suggests that the C. trachomatis serovar L2 LipA homolog may not be functional in vivo.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Seth M. Daly ◽  
Carolyn R. Sturge ◽  
Christina F. Felder-Scott ◽  
Bruce L. Geller ◽  
David E. Greenberg

ABSTRACT In late 2015, the first example of a transferrable polymyxin resistance mechanism in Gram-negative pathogens, MCR-1, was reported. Since that report, MCR-1 has been described to occur in many Gram-negative pathogens, and the mechanism of MCR-1-mediated resistance was rapidly determined: an ethanolamine is attached to lipid A phosphate groups, rendering the membrane more electropositive and repelling positively charged polymyxins. Acquisition of MCR-1 is clinically significant because polymyxins are frequently last-line antibiotics used to treat extensively resistant organisms, so acquisition of this mechanism might lead to pan-resistant strains. Therefore, the ability to inhibit MCR-1 and restore polymyxin sensitivity would be an important scientific advancement. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) are antisense molecules that were designed to target mRNA, preventing translation. Peptide conjugation enhances cellular entry, but they are positively charged, so we tested our lead antibacterial PPMOs by targeting an essential Escherichia coli gene, acpP, and demonstrated that they were still effective in mcr-1-positive E. coli strains. We then designed and synthesized two PPMOs targeted to mcr-1 mRNA. Five clinical mcr-1-positive E. coli strains were resensitized to polymyxins by MCR-1 inhibition, reducing MICs 2- to 16-fold. Finally, therapeutic dosing of BALB/c mice with MCR-1 PPMO combined with colistin in a sepsis model reduced morbidity and bacterial burden in the spleen at 24 h and offered a survival advantage out to 5 days. This is the first example of a way to modulate colistin resistance with an antisense approach and may be a viable strategy to combat this globally emerging antibiotic resistance threat. IMPORTANCE Polymyxin use has been increasing as a last line of defense against Gram-negative pathogens with high-level resistance mechanisms, such as carbapenemases. The recently described MCR-1 is a plasmid-mediated mechanism of resistance to polymyxins. MCR-1 is currently found in Gram-negative organisms already possessing high-level resistance mechanisms, leaving clinicians few or no antibacterial options for infections caused by these strains. This study utilizes antisense molecules that target mRNA, preventing protein translation. Herein we describe antisense molecules that can be directly antibacterial because they target genes essential to bacterial growth or blockade of MCR-1, restoring polymyxin sensitivity. We also demonstrate that MCR-1 antisense molecules restore the efficacies of polymyxins in mouse models of E. coli septicemia. Considering all things together, we demonstrate that antisense molecules may be effective therapeutics either alone when they target an essential gene or combined with antibiotics when they target specific resistance mechanisms, such as those seen with MCR-1. IMPORTANCE Polymyxin use has been increasing as a last line of defense against Gram-negative pathogens with high-level resistance mechanisms, such as carbapenemases. The recently described MCR-1 is a plasmid-mediated mechanism of resistance to polymyxins. MCR-1 is currently found in Gram-negative organisms already possessing high-level resistance mechanisms, leaving clinicians few or no antibacterial options for infections caused by these strains. This study utilizes antisense molecules that target mRNA, preventing protein translation. Herein we describe antisense molecules that can be directly antibacterial because they target genes essential to bacterial growth or blockade of MCR-1, restoring polymyxin sensitivity. We also demonstrate that MCR-1 antisense molecules restore the efficacies of polymyxins in mouse models of E. coli septicemia. Considering all things together, we demonstrate that antisense molecules may be effective therapeutics either alone when they target an essential gene or combined with antibiotics when they target specific resistance mechanisms, such as those seen with MCR-1.


Sign in / Sign up

Export Citation Format

Share Document